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Abstract For an n-connected graph G, the n-wide diameter d,(G),
is the minimum integer m such that there are at least n internally disjoint
(di)paths of length at most m between any vertices z and y. For a given
integer [, a subset S of V(G) is called an ({,n)- dominating set of G if for
any vertex z € V(G) — S there are at least n internally disjoint (di)paths
of length at most [ from S to z. The minimum cardinality among all (I, n)-
dominating sets of G is called the (I, n)-domination number. In this paper,
we obtain that the (I,w)-domination number of the d-ary cube network
C(d,n)is2forl <w<nandd,(G)- f(d,n) <I<d,(G)-1ifd,n >4,
where f(d,n) = min{e(|n/2] + 1), [n/2]e }.
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1 Introduction

This paper uses graphs to represent networks. The distance dg(z,y) from a
vertex x to another vertex y in a network G is the minimum number of edges
of a (di)path from z to y. The diameter d(G) is the maximum distance
from one vertex to another. The connectivity k(G) is the minimum number
of vertices whose removal results in a disconnected or trivial network.

In order to characterize the reliability of transmission delay in a real-
time parallel processing system, Hsu and Lyuu [6], Flandrin and Li [4]
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independently introduced n-wide diameter. For an n-connected graph G,
the distance with width n from z to y, denoted by d,(G;z,y), is the min-
imum number m for which there are n internally disjoint (z,y)-(di)paths
in G of length at most m. The n-wide diameter of G, i.e., the n-diameter,
denoted by d,(G), is the maximum of d,(G;z,y) over all pairs (z,y) of
vertices of G.

Li and Xu [7] defined a new parameter (I, n)-domination number. This
motives us to generalize the definition to that of the digraph. Let G be an
n-connected digraph, S a nonempty and proper subset of V(G), x a vertex
in G — S. For a given positive integer [, = is (I, n)-dominated by S if there
are at least n internally disjoint (S, z)-dipaths of length at most l. S is said
to be an (l,n)-dominating set of G if S can ([, n)-dominate any vertex in
G — S. The minimum cardinality among all (I, n)-dominating sets of G is
called the (I, n)-domination number, denoted by 7, ,(G).

The d-ary cube network C(d,n) is a digraph of d™ vertices, in which
any vertex z has the form (z,—1,Zn—2,...,20) where 0 < z; < d—1 for
0 <i<n-1, and z is adjacent to (Tn-1,...,2j4+1,%; + 1,Tj_1,...,T0)
for 0 < j < n — 1, where additions are taken modulo d. C(2,n) is the
n-dimensional binary hypercube Q,. It is clear that C(d,n) is vertex-
transitive and its diameter is n(d — 1). Hsu and Lyuu [6] proved that
dn(C(d,n)) = n(d—1)+1. Liaw and Chang (8] showed that d,,(C(d,n)) =
n(d—1)for1 <w <n-1andd,(C(d,n)) =n(d—1)+1. Since y,(G) =
1 for I > dn(G) and vy n(G) > 2 for | < dn(G), so it is of interest to
show some general properties and values of the (/,w)-domination numbers
of n-connected graphs for | < d,(G) and 1 < w < n (see, for example
1, 2,5,7,9, 10, 11, 12]).

In this paper, we obtain v, ,(C(d,n)) =2 for 1 < w < n and d,(G) —
fld,n) < 1 < dy(G) —1if dn > 4, where f(d,n) = min{e({n/2] +
1),[n/2]e }.

Terminologies and notations not defined here are referred to [3].

2 Preliminaries

Let ¢;(z) = x; denote the ith component of vertex z = (z,—1,Tn-2,. .-, Zo)-
For 0 < ¢ < n —1, the ith unit vector is the vector el with ¢;(e?") =1 and
cij(el}) =0 for 0 < j < n—1, with j # i. The vertex set of C(d,n)
can be viewed as a module over Z;. So vertex z can also be written as

n—1

¢ = 3 ze?. Denote |d/2] and [d/2] by e and e, respectively. Let
1=0

f(d,n) = min{e(|n/2| + 1), [n/2]e’} in this paper.

Suppose ag, a1, - a, are positive integers and 0 < i <3 < -+« <14, <
n—1for 0 <7 <n—1. Denote by << age}, (0), a1} (0),---,are} (0) >>
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the following dipath from vertex o = (0,0, ---,0) to vertex »_ aje;:
Jj=0

o —ep — 2l — - > age;
— aoep + e — aoej; +2ef — -+ — agef +aie;
— e

r—1 r—1 T

n n T n e . n

- zoajeij +é;, — Zoajeij +2ef — - Zoaﬂeh"
j= = J:

and by << age (v),aie} (v),---,arel (v) >> the following dipath from

v
vertex v = (e, e, -, €) to vertex v + ) ajer:
—
v —>’U+GZ)—+’U+26?0—>--'——>'U+(L06%
— v+ aeej, + e — v+ aoe) +2e — - — v+t agey +aref
—_ s

r—1 r—1 T

n n n n N
— v+ anjeij +el —v+ 'anjez-j +2 — - —ov+t _anjeij.
= 1= =

3 Main results

Lemma 3.1 Let S = {0, v} be asubset of V(C(d, n)) witho = (0,0, ---,0)
and v = (e,e,---,e), d,n > 4. Then there exists n internally disjoint di-
paths of length at most n(d—1) — f(n,d)+1 from S toz € V(C(d,n)) — S
if vertex x has no zero components.

Proof Since the digraph is vertex-transitive, without loss of generality,
we consider the following cases for any vertex x with no zero components
in V(C(d,n)) — S:

Case 1. Vertex x has no components with value e.

n—j J
N — N
Assume z = (Tp_1,...,25,Zj-1,...,20) fore+1 < zp_1,...,2; <d—1
and 1 <zj_1,...,70 <e—1

Subcase 1a. [n/2] < j < n. Construct n internally disjoint dipaths
from o to x as follows:

Py :<< zeef(0), Tr41€741(0), -+, Tn1€7_1(0), Toe (0), T1€T(0), -,
zi—1ep q1(0) >> for0<t<n-1.

We can see that the length of each dipath is

S o < jle—1)+(n—)(d—1) =n(d—1) - j <n(d—1)—[n/2]c"
=0

Subcase 1b. 0 < j < [n/2] — 1. By vertex-transitive, we can construct
n internally disjoint dipaths from v to x in the same way as in Subcase 1la,
and the length of each dipath is

187



j—1

Z(e + ) + Z (z1 —¢€) <](d—1)—+—(n——j)(e'—1)
=0 =3

n(e — 1)+ je
n(e —1) +e([n/2] — 1)
n(d—1) —e(|n/2] +1).

Case 2. Vertex z has some components with value e.

n—j—k k J
e e, e, e

Assumex = (Tp—1,...,Tj4k, €., 6,Zj—1,...,%0) fore+l < zp_g,...,
ziypk <d—land1<z;_1,...,z0<e—-1,k>1

Subcase 2a. [n/2] —1 < j < n. Construct the same dipaths from o to
x as in Subcase la. The length of each dipath is

Al

j—1

le-{—ke—}- Z z; <jle—1)+ke+(n—j3—k)(d—1)
I=j+k

d—1)—je —k(e —1)

n(
n(d—1)—([n/2] —1)e — (¢ = 1)
n(

A

d—1)—[n/2]e +1.

Subcase 2b. 0 < j < [n/2] — 2. Construct n internally disjoint dipaths
from v to = as follows:

P, << (€ 4x)er(v), (€ +zep1)el 1 (v), -, (€ +xj— 1) e 1(v), (Tjpk—
€)ef (), (Z4ht1—€)€f 1y 1 (0)s - (Tn—1—€)er_1 (v), (€ +0)ef (v), (€' +
z1)ef(v), -, (e +ze_1)el ;(v) >> for0<t<j—1;

Py :<< (d=1)ef (v), (zj+k—€)e}, (v), (Tj4k41—€)€] k11 (V) (Tn1—
e)en_1(v), (¢ + z0)ef (v), (¢ + z1)ef(v), -+, (€ + zj_1)ef_ 1 (v), ef (v) >>
forj <t<j+k—-1;

P :<< (21 — e)eP(v), (Te41 — €)efi1(v), -, (Tn1 — €)en_ 1(0), (€' +
20) e (v), (€ +21)el(v), - (€ +25-1)€l_, (), (54— ey (V), (14041~
e)el ky1(V)y ooy (Te-1 —e)ef 1 (v) >> forj+k<t<n-1

The length of each dipath is at most

— n—1

E(e +z)+ Y (mi—e)+d

=0 l=j+k
<jd=1)+(n—j—k)e —1)+d
=n(e —1)+je—k(e —1)+d
<ne —1)+([n/2] —2)e—e +1+d
=n(d—1)—e(|n/2] +1)+1.

Summarizing cases 1 and 2, the length of each dipath is at most n(d —
1) — f(n,d) + 1.
|
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Lemma 3.2 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,---,0) and v = (e,e,---,e), d,n > 4. Then there exists n inter-
nally disjoint dipaths of length at most n(d — 1) — f(n,d) + 1 from S to
z € V(C(d,n)) — S if vertex = has some zero components.

Proof We consider the following cases:

Case 1.Vertex x has no components with value e.

n—i—j ki (
Assume z = (Tp-1, 7 ,xi+;,'zi+j_1j:. ey 5y 0,...,0) fore+1 < z,_q,
*y Litj Sd—l and 1 S$i+j—1,"'yxi Se—l,iz 1.

Subcase la. [n/2] +1 < i+ j < n. Construct n internally disjoint

dipaths from o to z in the samy way as in Subcase 2b of Lemma 3.1. The

length of each dipath is at most

S aitd <jle—1)+(n—i—j)d—1)+d

=1

=n(d—1)—i(d—-1)—je +d
<nd—1)—i(d—1)—([n/2] +1—i)e +d
=n(d—1) —i(e—1) = ([n/2] + 1)¢' +d
<n(d-1)-— (e—l) ([n/2] +1)e +d
<n(d—1)—[n/2]e +1.

Subcase 1b. 0 < i+ j < [n/2]. Construct the same dipaths from v to
x as in Subcase 1b of Lemma 3.1. The length of each dipath P; is

i+j—1 n—1

ie' + by (€ +z)+ ¥ (mi—e)

I=itj
Sie 43—+ (i e 1)
:n(e —1)+1i+je
Sn(e D+i+([n/2] —i)e
n(e 1) —i(e—1) + [n/2]e
n(e —1)— (e —1)+ [n/2]e
n(d—1) —e(|n/2] +1) + 1.

Case 2. Vertex has some component with value e.

Al

n—i—j—k k j i
~ A \ﬂh,—/\_ﬂl—’!
Assume T = (Tp—1,.. ., Titjtk) €.+, Titj—1,---,%s0,...,0) for e +
1§xn_1,...,mi+j+kSd—landlﬁxiﬂ_l,...,nge—l i,k>1.

Subcase 2a. [n/2] +1 < i+ j < n. Construct n internally disjoint
dipaths from o to x in the same way as in Subcase 2b of Lemma 3.1. So
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the length of each dipath is at most

Z:vH—d <jle—1)+ke+(n—i—j—k)(d—1)+d
=

)
=n(d-1) - ( —1)——je—k(e—1)+d /
<n(d-1)- 1) — ([n/2]+1—/z)e —’k(e —1)+d
=n(d - )—'L(e—l) ([n/2]+1)<’3 —k/(e —-1)+d
<n(d-1)- (e—l) ([n/2] +1)e — (e —1)+d

n(d—1) — e ([n/2] +1) +2.

Subcase 2b. i+j = [n/2]. Construct n—i— j internally disjoint dipaths
from o to z and ¢ + j internally disjoint dipaths from v to = as follows:

Py :<< 2:€7(0), Tiy1€741(0), -+ -, Ty j-1€7451(0), Teep (0), Tey1€811 (0),
 Tn—165_1(0), Tiyjely;(0), Tivjr1€ j11(0), -+ Te—1€f 4 (0) >> fori+
j<t<n-—-1;
/ I /
P << (e +zp)ef(v), (e +zoqr)ef 1 (v),- -, (e + Tipj-1)e, ;_1(v),
(Tiyjre—e)e z—}—j-l-k:( v), (Ii+j+k+,1_e)e?+j+k+1(v)’ oy (Tno1—e)en_q(v), (e +
0)ep(v), (¢ +z1)el(v), -, (¢ +e1)efi(v) >> for0<t<i+j—1.

n—1
The length of dipath P, for i+j <t <n—11is ), z; and the length of

=1

i+j—1 , n—1
dipath P, for 0 <t <i+j5—1is Y, (e +z;1)+ >, (x;—e). Noting
=0 I=itj+k
i+7—1 , n—1
E x; < E (e +xi)+ Y. (zi1—e)fori+j=[n/2], so the length of
= l=itj+k
each dlpath Pt is at most
i+j—1 n—1
> (e+z)+ > (zi—e)
=0 I=itj+k

=
gie/,+j(d—1)+(n—i—/j—k)(e'—1)
=n(e,—1)+i+je—k(e -1) ,

n(el —1)+i+ ([n/2] —i)e —k(e - 1)

n(e’ —1)+[n/2le—i(e—1) — k/(e -1)
n(e —1)+[n/2le—(e—1)— (e —1)

n(d—1)— |n/2le—d+2.

Al

Subcase 2c. i+ j = [n/2] — 1. Construct the same dipaths as in
i+j—1 , n—1
Subcase 2b of Lemma 3.2. Similarly, > (e +a;)+ > (21 —e) <
=0 I=itj+k
—|n/2Je —d —e+2, and
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n—1
Yo <jle=1)+ke+(n—i—j—k)(d—-1)

)
nd-1)—id—1)—j¢ —k(d =1)
n(d - 1) = i(d = 1) - (/2] ~ 1 = )¢’ k(¢ ~1)
n(d—1) —i(e—1) = ([n/2] —1)e —k(e —1)
(d D —=(e=1)—([n/2] =1)e — (e —1)

—n(d——l)——e——{n/ﬂe + 2.

Subcase 2d. 0 < i+ j < [n/2] — 2. Construct the same dipaths as in
Subcase 2b of Lemma 3.1. So the length of dipath is at most

, i+j—-1 n—1
ie + Y. (e +z)+ Y, (mi—e)+d
= I=itj+k

<ie€ +jd—1)+(n—i—j—k)( —1)+d
=n(e’—1 +i+je—k(e —1)+d

)
gn(e 1)+z+([n/2’|—2—z)e—k(e'—’1)+d
= (e 1) —ile—=1)+ [n/2]—2)e——k,(e -1)+d
n(e —1)—(e—1)+([n/2] —2)e— (¢ —1)+d

A

n(d—1) —e(|n/2] +2) + 2.

Summarizing cases 1 and 2, the length of each dipath is at most n(d —

1) — f(n,d) + 1.
1
Finally, we can see that Lemma 3.1 and 3.2 yield the following theorem.

Theorem 3.3 Ifd,n > 4, then vy, ,(C(d,n)) =2 for n(d—1)— f(n,d)+
1<l<n(d-1).
]

Lemma 3.4 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,---,0) and v = (e,e,---,€e), dy;n > 4. For 1 < w < n — 1, there
exists w internally disjoint dipaths of length at most n(d—1) — f(n, d) from
S tox € V(C(d,n)) — S if vertex x has no zero components.

Proof We consider the following cases:

Case 1.Vertex z has no components with value e.

From the Case 1 of Lemma 3.1, the result follows.

Case 2.Vertex x has some component with value e.

n—j—k k
P A S U — N —
Assume z = (Tp—1,...,Tj4k, €., 6,Zj_1,...,%0) fore+1 <z _q,

Tk <d—land 1<z 4,...,20<e—-1,k>1
Subcase 2a. [n/2] < j < n. Construct the same w internally disjoint
dipaths as in Subcase 1a of Lemma 3.1, and we can easily see the length of
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each dipath is

j-1 n—1
le + ke + Z z<n(d=1)—[n/2]e +1—¢.
1=0 I=j+k

The details are omitted here.

Subcase 2b. 0 < j < [n/2] —1.

If K = 1, construct the same w internally disjoint dipaths as P; for
0<t<j—1landj+1<t<n—1in Subcase 2b of Lemma 3.1. Similarly,
the length of each dipath is

ij—1 n—1
Y€ +z)+ D (@m-e)<n(d—1)—e([n/2] +1)+1—¢.
1=0 l=j+1

Otherwise, k > 2. We consider the following cases:
For j = [n/2] — 1, the desired w internally disjoint dipaths are similar
to that in Subcase 1a of Lemma 3.1, the length of each dipath is

j—1 n—1
Zml + ke + Z o <n(d—1)—[n/2]le +2—¢.
1=0 I=j+k

For j < [n/2] — 2, the desired w internally disjoint dipaths are similar
to that in Subcase 2b of Lemma 3.1, the length of each dipath is at most

—

n—1
(€ +z)+ Y (m—e)+d<n(d—1)—e([n/2] +1)+2—¢.
l=j+1

.

l

I
=]

Lemma 3.5 Let S = {o,v} be a subset of V(C(d,n)) with o =
(0,0,---,0) and v = (e,e,---,€), dyn > 4. For 1 < w < n —1, there
exists w internally disjoint dipaths of length at most n(d —1) — f(n,d) from
S toz e V(C(d,n)) — S if vertex = has some zero components.

Proof We consider the following cases:

Case 1. Vertex x has no components with value e.

n—ig i
Assume z = (?L‘n_l, . ,mi+;,?ci+j_1, ey 2,0, ,0) fore+1< 2,1,
T4 Sd——l and 1 SCL'¢+_7'_1,"~,II!¢ Se—l,iZl.

Subcase 1a. [n/2] +1 < i+ j < n. We can construct w internally
disjoint dipaths from o to z.

If ¢ = 1, the length of each dipath is

n—1
Y @ <n(d—1)—[n/2]e +1—d.
=1
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If ¢ > 2, the length of each dipath is at most

n—1
le +d<n(d—1)—[n/2]e +2—e.
=1
Subcase 1b. i+ j = [n/2]. If i > 2, construct w internally disjoint
dipaths from v to z, the length of each dipath is

i+j—1 n—1
i€ + Y (€ +z)+ > (m—e)<nd-1)—e(|n/2] +1)+2—e.
I=i l=i+j

If i = 1, it is similar to the case of ¢ = 1 in Subcase la of Lemma 3.5.
The length of each dipath is

n—1
Zzl <n(d—-1)—[n/2]e +1—e.
1=i

Subcase Ic. i+ 7 < [n/2] — 1. Construct w internally disjoint dipaths
from v to z, the length of each dipath is

i+j—1 n—1
i€ + Y (€ +az)+ > (@m—e)<nd-1)—e(|n/2]+1)+1—e.
I=i l=i+j

Case 2. Vertex x has some component with value e.
From the Case 2 of Lemma 3.2, the result follows. ]
Finally, we can see that Lemma 3.4 and 3.5 yield the following theorem.

Theorem 3.6 If d,n > 4, then v,,(C(d,n)) =2forl1 <w <n-1
and n(d —1) — f(n,d) <I<n(d-1)-1. 1
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