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Abstract 
----t 

Consider a labeled and strongly oriented cycle Crn and a set r = 
-----4- f----

{Cn, Cn}, where Cn, Cn are two labeled and strongly oriented cycles 
with the same underlying graph and opposite orientations. Let h : 

----t ----t 

E( Crn) ----> r be any function that sends to every edge of Crn either 
---+ <--
Cn or Cn. The main goal of this paper is to study the underlying 

----t 

graph of the product Crnc>9hf, where the product is defined as follows: 

and 
----t 

((a, b), (c, d)) E E(Crn @h f) 

<=>(a, c) E E(0:) 1\ (b, d) E h(a, b). 

This product is of interest since it preserves many different types of 
labelings. For instance, edge-magic and super edge-magic labelings. 
In this paper, we also study the algorithmic complexity of determin-_, 
ing when a diagraph D can be factored using the product @h in 
terms of a given set of diagraphs r. This is the main topic of the 
third section of the paper. 
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1 Introduction 
In this paper, we will follow for the general graph theory terminology and 
notation Chartrand and Lesniak [3]. In particular, we will use simple graphs 
i.e., graphs without loops nor multiple edges, unless otherwise specified. By 
a (p, q)-graph, we mean a graph of order p and size q. 

In 1970, Kotzig and Rosa introduced the concept of edge-magic labeling 
of graphs under the name "magic valuation" [6]. These were later rediscov-
ered by Ringel and Llad6 [8], who coined one of the now more popular terms 
for them: edge-magic labeling. More recently, they have been referred to 
as edge-magic total labeling by Wallis [9]. For a (p, q)-graph G, a bijective 
function f : V(G) U E(G) ----+ {1, 2, ... ,p + q} is an edge-magic labeling 
of G if for each uv E E(G), f(u) + f(uv) + f(v) is a constant k called the 
valence of f. If such a labeling exists then G is said to be an edge magic-
graph. In [4], Enomoto et al., defined an edge-magic labeling of a graph 
G of order p to be a super edge-magic labeling if f(V(G)) = {1, 2, ... ,p}. 
Super edge-magic graphs and labelings have been called strong edge-magic 
total graphs and labelings respectively by Wallis [9]. It is worth to men-
tion that the concept of super edge-magic labeling was already known by 
Acharya and Hegde. They introduced this same concept in [1] under the 
name of strongly indexable graphs. However instead of thinking about con-
stant sums, Acharya and Hegde where thinking on arithmetic progressions. 
In their effort to study labelings of the "magic type", Figueroa-Centeno 
et al. [5] introduced the concept of edge-magic and super edge-magic di-
graphs as follows. A digraph D is said to be (super) edge-magic if the 
underlying graph is (super) edge-magic. Also they extended the concept 
of (super) edge-magicness to graphs with loops. In the same paper the 
following operation involving digraphs was introduced. Let D = (V, E) be 
a digraph with V c N, and let r = { be a family of 1-regular digraphs 
(loops allowed) all of them with the same vertex set V' = {1, 2, ... , n }. Let 
h : E ----+ r be a function that assigns to every arc of E an element of r. 

---+ 
Then the product D 0h r is defined as follows: 

---+ 
V(D 0h r) = v XV' 

and 
---+ 

((a,b),(c,d)) E E(D 0hr) 

<=?(a, c) E E 1\ (b,d) E E(h(a,c)). 
---+ ---+ 

Notice that the adjacency matrix of D 0hr, denoted by A(D 0hr), can 
---+ ---+ 

be obtain by multiplying every 0-entry of A(D), where A(D) denotes the 
---+ 

adjacency matrix of D, by the n x n null square matrix, and every 1-entry 
---+ 

of A(D) by A(h(a,c)), where A(h(a,c)) denotes the adjacency matrix of 
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h(a, c). It is worthwhile mentioning that when the function h is constant 
then the previous product coincides with the classical Kronecker product 
of matrices. 

Some definitions, terminology and operations involving diagraphs are 
given in [7] F.A. Muntaner-Batle defined that a super edge-magic labeling 
f of a bipartite graph G = (V1 u V2 , E) is called an special super edge-
magic labeling of G (and G is called an special super edge-magic graph) 
if it has the extra property that f(Vl) = { and f(V2) = { 
where JV1J = Pl and JV2J = P2· In [5] Figueroa-Centeno et al. introduced 
the following result involving (special) (super) edge-magic labeling and the 
previous product. 

---+ 
Theorem 1. Let D = (V, E) be a (special) (super} edge-magic digraph 
with a (special) (super} edge-magic labeling f for which each vertex takes 
the name of its (special) (super} edge-magic label. Also let r = 
be the family of all super edge-magic 1-regular labeled digraph of order p 
where each vertex takes the name of its super edge-magic label. Consider 

---+ 
any function h: E-----+ r. Then the digraph D ®h r is (super) edge-magic. 

A problem that Proposition 1 presents is that in many cases we do not 
know before hand, which one is the resulting product digraph. In this paper 

----> 
our main goal, although not the only one, is to study the product Cm ®h r 
in the following case: 

----> 
1. The digraph Cm is a cycle of length m oriented in a cyclic way. That 

is to say either clockwise or counterclockwise. 
____. 

2. The set r = {Cn, Cn} consists of two cyclically directed cycles of 
____. 

order n with und(Cn) = und(Cn) and with opposite orientations. 
----> ----> 

3. We consider any function h : E( Cm) -----+ r that sends the arcs of Cm 
to the elements of r. 

----> ____. 
In this section we study the product Cm ®h {Cn, Cn}· We start by precisely 
defining every element involved in the product. 

----> 
1. The oriented cycle Cm is the digraph with the vertex set 

----> 
V(Cm) = {0,1,2, ... ,m-1} 

and the arc set 

E(C::.) = {(m- 1, o)} u {(i, i + 
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Similarly for oriented cycle Cn 
+--- +---

2. The oriented cycle Cn is the digraph with the vertex set V(Cn) = 

{0, 1, ... , n-1} and with arc set E({7.:) = { i (mod n), i-1 (mod 
+---

3. The function h : E( Cm) -----+ { Cn, Cn} is any function that assigns to 
+--

every arc of Cm either Cn or Cn. 

Next, we will use the notation N(h-) in order to denote the number of 
+--

edges for which the function h assigns the digraph Cn. 

Theorem 2. Let m, n be two odd numbers with n prime. Then the product 
Cm ®h {Cn, Cn} = nCm if and only ifm- 2N(h-) = 0 (mod n). 

Proof. Let (0,0) E V(Cm ®h {Cn,Cn}). By the way the digraph Cm has 
been defined, since (i, i + 1) E E(Cm) for 0 ::::; i ::::; m- 1, it follows that 

+--
there exists bo, bt, ... , bm-1 with ((i, bi), (i+ 1, bi+1)) E E(Cm®h { Cn, Cn} ). 
That is to say, the oriented path (may be closed oriented path) 

((0, 0), (1, b1)), ((1, b1), (2, b2)), ((2, b2), (3, b3)), ... ' 
((m- 2, bm-2), (m- 1, bm- 1)), ((m- 1, bm-1), (0, bm)) 

+--
is an oriented subpath of the product digraph Cm ®h {Cn, Cn}· Hence 
a cycle of length m will be closed if and only if bm = 0. It is easy to observe 
that bm = (m- 2N(h-)) (mod n). Therefore, we need m- 2N(h-) = 0 
(mod n) in order to close a cycle of length m. A similar reasoning will give 
us the remaining cycles of length m. D 

+--
Theorem 3. Let m, n E N and consider the product Cm ®h { Cn, Cn}. 
Let g be a generator of a cyclic subgroup of Zn, namely < g >, such that 
I < g > I = k. Also let N9 (h-) < m be a natural number that satisfies the 
following congruence relation 

Then, if the function h assigns to exact by N9 (h-) arcs of Cm the element 
+---
Cn, the product 

------+ 
consists of exactly disjoint copies of a strongly oriented cycle Cmk. In 
particular if gcd(g, n) = 1, then < g >= Zn and if the function h assigns 

+--
to exactly N 9 (h-) arcs ofCm the digraph Cn, then 
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-----'> 
Proof. Assume the the function h assigns to exactly N 9 (h-) arcs of Cm the 

-----'> 
diagraph Cn. Also consider a directed subpath of Cm ®h { Cn, Cn} (possibly 
closed) that starts at (0, 0). Then using a similar reasoning to the one used 
in the proof of Theorem 2, the vertex that is in position mk in the path is 
a vertex of the form (0, k[m- 2N9 (h-)] (mod n)). Remember that k is the 
smallest number that makes kg= 0 (mod n) since l(g)l = k and therefore 
we cannot close an oriented cycle of smaller length than mk. A similar 
reasoning will give us the remaining cycles of length mk. 0 

3 NP-completeness 

The goal of this section is to prove the following result: 

Theorem 4. The problem of deciding if a given digraph G can be factored 
into a product of the form H ®h 6 where 

1. H is a digraph. 

2. 6 is a given family of digraphs all of them of the same order. 

3. h : E(H) -----+ 6 

is at least NP-complete. 

In order to prove this result, we state and prove the following results. 

Theorem 5. A diagraph G of order 2p contains a tournament of order p 
if and only if there exist: 

1. A digraph H with a loop (>., .\). 

2. A family of digraphs 6 with 161 ::=;; 4 and with a tournament of order 
p, Kp, in 6. 

3. A function h: E(H) -----+ 6 with h(.\, .\) =-----+ Kp and G = H ®h 6 

Proof. (=*)Let [p] = {1, 2, ... ,p} be the vertex set of the tournament. 

• Let H be the digraph with V(H) = {0, 1} and with adjacency matrix 

A(H) = ( i i ) 
• Let 6 = {S1 , Sz, 8 3 ,-----+ Kp} with V(Si) = [p] and 

- E(Sl) ={(a, b- p) with (a, b) E E(G) and a, b- p E [p]} 

- E(S2 ) ={(a- p,b) with (a, b) E E(G) and a- p,b E [p]} 
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- E(S3) = {(a-p,b-p) with (a, b) E E(G) and a-p,b-p E [p]} 

• Let h(O, 0) =------> Kp, h(O, 1) = S1 , h(1, 0) = S2 and h(1, 1) = S3. By 
construction, 

G=H®h6. 

( <¢=) It is easy to check that the set {A} x [p] C V (G) is the vertex 
set of the tournament ------> Kp. 

0 

Remark 1. Observe that it is easy to find a tournament in a digraph if we 
know how to find a clique of the same order of the tournament in a graph 
and viceversa. 

In [10] we found the half-clique problem that we state next. The half-
clique problem asks: Given a graph G with an even number of vertices, 
does there exist a clique of G consisting of exactly half the vertices of G ?. 
The following result is well known: 

Theorem 6. The half-clique problem is NP-complete. 

As a corollary of the above discussion, we obtain Theorem 4. 

4 Conclusion 

In [5] Figueroa-Centeno et al. introduced the product ®h as a tool to 
generate exponentally many labelings for many different graphs. However 
a problem exists: it is not always easy to determine before hand the output 
of the product ®h· 

The paper has been divided into two parts. The first part consists on 
---+ 

studying the behavior of the product ®h when we deal with a cycle Cm 
_____.. +----- _____.. 

oriented in a cyclic way, with a set of the form {Cn, Cn}, where Cn and 
+----
Cn are two cyclic oriented cycles with opposite orientations with the same 

---+ _____.. +--
underlying graph and with any function h : E(Cm) ------> {Cn, Cn}· This 
question has been closed. 

The second part of the paper has been devoted to show that the problem 
of factoring a given graph, by means of the product ®h can be in ocations 
an NP-complete problem. This has been proved by showing a relationship 
among the product ®h and the well known "half-clique problem". 

At this point we suggest the following directions for further research. 
_____.. +-----

1. What can be said about the product H ®h {Cn, Cn}, where H is 
_____.. +--

a unicyclic digraph with the cycle oriented cyclically, Cn and Cn are 
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two cyclic oriented cycles with opposite orientation with the same 
----+ -----+ +--

underlying graph and with any function h: E(Cm)------) {Cn, Cn}? 

2. Let r be a set of unicyclic diagraphs with equal order and size, with 
the same vertex set V and with the cycle oriented cyclically. Let H 
be any diagraph and consider any function h : E(H) ------) r. What 
can we say about the product H 0h r? 

3. Under which conditions does the product 0h result in a diagraph G 
with connected underlying graph? 

Finally, we will close this section mentioning that the product 0h has 
already given many results on the topic of graph labelings. However we 
feel that this diagraph operation, should not only be studied because of 
this relationship with graph labelings but also because it is interesting just 
as a diagraph operation itself. 
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