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Abstract: A book-embedding of a graph G consists of placing the
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1 Introduction

In this paper, we investigate embedding of graph in structures called
books. Let G be a graph, denote the vertex set of G by V(G) and edge set
by E(G). A book consists of a spine which is just a line and some number
of pages each of which is a half-plane with the spine as boundary. A book-
embedding of a graph G consists of placing the vertices of G on the line in
order and assigning edges of the graph to pages so that edges are assigned
to same pages without crossing. Page number, denoted by pn(G), is a
measure of the quality of a book embedding which is the minimum number
of pages in which G can be embedded. For an easier understanding of page
number, it is helpful to have a look at the example in Fig. 1.

Ollmann [7] first introduce the page number problem and the problem
is NP-complete, even if the order of nodes on the spine is fixed ([1, 2]).
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@K, (b) Embedding of K 4

Fig.1 Embedding of K4, pn(K4) = 2. Ordering of V(G) = {vy, va, v3, v4}.
In (b), dashed line represents one page, black lines represent another.

The book embedding problem has been motivated by several areas of com-
puter science such as sorting with parallel stacks, single-row routing, fault-
tolerant processor arrays and turning machine graphs, see [1]. Book em-
beddings have applications in several contexts, such as VLSI design, fault-
tolerant processing, sorting networks and parallel matrix multiplication
(1, 4, 5, 6]).

A multi-loop network, denoted by M L(N;ay,as,...,a;), can be repre-
sented by a directed graph with N nodes, 0,1,..., N — 1 and [N links of [
types, where the type -a; links (we call the type -s; links s;-arcs if there is
no confusion) are

v = v+a;(mod N),v=0,1,...,N—-1and :=0,1,...,1.

A triple-loop networks are denoted by TL(N; a1, az,a3). In [8], Yang embed
double-loop networks with even cardinality in books.

Theorem 1.1. [8] Let ged(N;s) = dy,ged(N,t) = dy. Then DL(N;s,t)
can be embedded in a 4-page-book if di (or ds) is even. In particular,
DL(N;s,t) can be embedded in a 3-page-book if N|dit (or N|dat).

Theorem 1.2. [8] Let ged(N;s) = di,ged(N,t) = da. Then DL(N;s,t)
can be embedded in a 7-page-book if di and dy are odd. Furthermore,
DL(N;s,t) can be embedded in a 6-page book if dy =1 (ordy =1).

In this paper, we propose schemes to embed the connected triple-loop
networks with even cardinality in books, then we give upper bounds of page
number of some multi-loop networks.
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2 Preliminaries

Theorem 2.1. [9] ML(N;si,s2,...,51) is strongly connected if and only
if ged(N, s1,582,...,81) = 1.

If ged(N, a1, asz,a3) = d then we can decompose TL(N;a1,az,a3) to d
copies of TL(%[—; &, %2 28). Since if Gy and G are two components of G,
then pn(G1 N G2) = maz{pn(G1),pn(G2)} ([10]). So, we always assume
that ged(N, a1, as,a3) =1 in the following.

C. Godsil and G. Royle[11] have shown the next theorem. We use this

theorem to prove a lemma which is important to this paper.

Theorem 2.2. [11] If 0 is an automorphism of the group G, then X(G,C)
and X(G,0(C)) are isomorphic.

In Theorem 2.3, X is a Cayley graph, and C is an inverse-closed subset
of G\e. We use a = b to denote a = b (mod N) if there is no confusion. Let
gcd(N,a;) = d; for i = 1,2,3. By Theorem 2.3, we can draw the following
lemma.

Lemma 2.3. Ifd; =1 for some i € {1,2,3}, then there are two integers b
. and c such that TL(N;ay,a2,a3) = TL(N;1,b,c).

Proof. Since Z}; is an automorphism of Zy, by Theorem 2.3, we have
TL(N;ai,a2,a3) = TL(N;uai,uaz, uag) with u € Z%. Since d; = 1,
without loss of generality, we assume that i = 1, there are two nonnegative
integers v and v such that ua; +vN = 1. Clearly, ged(u, N) = 1 and ua;
1. Let b = uaz and ¢ = uas, TL(N;a1,a2,a3) = TL(N;uay,uaq, uas)
TL(N;1,b,c).

a R

3 Main results

In this section, we consider the upper bounds of page number of triple-
loop networks and some multi-loop networks.

Theorem 3.1. If d; is even, —dz—" is odd, and a; = (%)al, where i,j and
I are distinct, and i,j,1 € {1,2,3}, then pn(TL(N;ay,a2,a3)) < 6. In
particulars, pn(T' L(N; a1, a2,a3)) is reduced one if dia; = 0. Further more,

pn(TL(Nja1,a2,a3)) can be reduced two if N = 2a;

Proof. Without loss of generality, we assume that d; is even, %1 is odd,
and ag = (%l)ag. Next we derive the method of book embedding.

Let C;(i € {0,1,...,d; —1}) be an ordered & -element array (mod N is
omitted) and
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C; = (O + ias, a1 + iag, 2aq + tag, ... Day + iag), 1 is even and 7 <

d;

N
7('&;__

2 ?
Ci = ((E - l)al + tao, (H‘ - 2)01 + iagq, (E — 3)&1 +tas. .. ,iaz), 1 is

odd and 7 < -d—l,

2
3
C’z——(0—}—(?%—i—l)az,al—{—(%dl—i—l)a2,2a1+(——l——i—1)a2,
,(g~1)a1+(§%—z—l)ag),iisevenandiz-—l——i—l,
1
N 3d N 3d N
C’Z=((d—l—1)a1+(71—~z—1)a2,(51——2)a1+(—2—1—1—1)a2,(d—1—3
d
)a1+(%ﬁ—i—l)az,u-,OJr(%ll—-13—1)&2),iisoddandiz-él—,
N di N dy N dy dy
Cg_1=((——-1 —, (= - —,(=— -3 —, ., 04+ =

Thus U= C; = V(G), because |C;| = &£ and C;n C; = 0.

Put C; in the line with the ordering of Cy, C1,. .., Cy4_1, then all vertices
of V(G) are assigned. Use E(C;) to denote an arc set containing all arcs
induced by vertex set C; and use E(C;, C;) to denote an arc set containing
all arcs from C; to C;.

There are some properties as follows.

1. The ordering of V(TL(N;a1,az,a3)) is Co - C; — -+ = Cy, 1.

2. The arc set {E(C;)| i =0,1,...,d — 1} contains no ag-arcs and as-
arcs, and {E(C;,C;)| 1,7 =0,1,...,d— 1,1 # j} contains no a;-arcs.

2

o _
3. Areset (UZg E(Ci, Cit1)) UE(Cy _y, Cay—1) UL 52 E(Civa, Ci))
- 2
1

4.
contains no ag-arcs. Arc set (U2, E(C;,Cq,—i—1)) U(U‘ji_ii E(C;,
-2

C4,—i—1)) contains no ag-arcs.
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Fig.2 Property 1.

Co C1 Cd-2 Cd—i

Co C1 B C d-2 C d-1
Fig.5 a-arcs.

For an easier understanding of the Property, it is helpful to have a look at
Fig.2-5.

By Property 1 and each ordering of C; for ¢ € {0,1,...,d; —1}, we have
that ay-arcs is embedded in one page. Thus we only need to embed as-arcs
and ags-arcs in book.

Claim 1. Arc set ag-arcs can be embedded in three pages with out crossing.

In particular, it only need two pages to be embedded if dyas = 0.

Proof. In the ordering of V(T'L(N;ay,as,a3)), if ¢ is even and i < %1 -1,
N

then E(C;,C;11) contains I Gp-arcs and they are {(jai + iaq,ja; + (i +

1)ay)|j from 0 to 31!1 — 1} which can be embedded in one page denoted by
page-I without crossing. If i is odd and i < %l, then arcs of E(C;,C;+1)
are {(ja1 +iaz,ja; + (i+1)az)|j from d_]\i —1 to 0} which can be embedded
in another page denoted by page-1I without crossing.

Similarly, when ¢ > %l. If 7 is even, then E(C;4+1,C;) can be embed-
ded in one page without crossing. Since E(C;;1,C;) does not cross with
E(C;,Cj41) for j < %L, E(Ci41,C;) can be embedded in page-I. If ¢ is odd,
then E(C;;1,C;) can be embedded in one page. Since E(Ciy1,C;) does
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not cross with E(C;,Cj11) for j < %1, E(Ci41,C;) can be embedded in
page-II.
Arcset E(Ca; _,,C4q,-1) contains % aq-arcs, and they are {(ja; +(i21 —
2

ag, ja; + ‘—121a2)|j from 0 to <]iv_1 — 1} which can be embedded in page-I.

Arc set E(C%l,C’O) contains % ag-arcs, and they are {(ja; + (d; —

1)ag, jai +diaz)|j from % —1 to 0} which can be embedded in two pages.

We assign {((d1 —1)az+1iag, d1az+1iaz)|i from 0 to I—V—:‘%L“Z} in page-II, and
the other arcs of E(C 4, ,Cp) can be embedded in another page. Clearly, this
2

is an arrangement without crossing. So as-arcs can be embedded in three
pages. In particular, if N|dyag, then E(Cq4,,Co) = {((d1 — 1)az,0), ((d1 —
2

Das+ai,a1),...,((di —1as+ (—(sz; —1)ay, ENT —1)ay)} only need one page.
That is ag-arcs can be embedded in two pages.

Claim 2. Arc set ag-arcs can be embedded in two page without crossing.
In particulars, it can be embedded in one page if N = 2as;.

Proof. Since a3 = %’-ag, and %l are odd, in the vertex ordering of
TL(N;al,ag,ag), E(C’i,C’dl_l_i) = {(ja1 + iaz,jal + (Z + %L)ag)lo S

j < a‘\—i —-1,0 <1 < %l — 1} can be embedded in one page. Arc set

E(C;i, Cq,—1-i) = {(ja1 + iaz,ja1 + (i + ©)az)|0 < j < fiv—l -1,4 <i<
d; —1} can be embedded in two pages, and {(ja; +ias, ja; +(i+%l)a2)|0 <

J < N;%, %1 < i < dy — 1} can be embedded in one page and other

arcs need another one. For i,5 € {0,1,..., %l — 1} and 7 # j, arcs in
E(C;,Cq4,-1-4) do not cross with arcs in E(Cj,Cq,—1-;). Since any az-arcs

4 4 4 9
belong to (U,2, "E(C;,Cq,—1-:)) U2, E(C4,-1-i,C;)), ag-arcs can be
embedded in two pages.

When N = 2a3, in the vertex ordering of TL(N;a1,as2,a3), for i,j €
{0,1,..., %1—1} and i # j, arcs in E(C;,Cq,-1—;) and arcs in E(Cy,_1-4,¢,),
where these arcs have same end vertices, have reverse direction, and they
can be embedded in one page.

Combining Claim 1 and Claim 2, we have that pn(TL(N; a1, az,a3)) <
6. In particulars, pn(TL(N;a1,az,a3)) is reduced one if d;a; = 0. Further
more, pn(TL(N;a1,az,a3)) can be reduced two if N = 2a;. a

Let N and a; are even, and assume a; = ¢; for i = 1,2,3. When ¢|N,
let s; = <. When ¢; { N, let s; = £ +1. When ¢; t N, assume N = kq; +t,
where k and t are positive integer. Thus let s; = 92;t(l +1), where [ is the
minimum positive integer such that ¢;|{N. For arc set F, we use G[E] to
denote induced subgraph by E. Since symmetry of triple-loop networks,
Gla;-arcs] =2 G[(N — a;)-arcs]. Thus we can assume ¢; < %’—, s0 §; < (%1

Lemma 3.2. For positive integers N, I, a1 and a3, if N and a1 are even,
a; 1IN (I > 1), az is odd, and gcd(N,a;) = d # 2, then single-loop
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(SL(Nja1)) can be embedded in s1 pages in vertex ordering (0,2,4,..., N —
2,a2 —2,...,a2 +4,a2 +2,a3) .

Proof. Let the vertex ordering of single-loop SL(N;a1) be (0,2,...,N —
2,a3 —2,...,a2 +2,a3), where a, is an arbitrary odd integer and ap < N.
Assume a; = ¢, if ¢1|N, then s; = 4, where s is an positive integer. If
q1 {1 N, then 57 = 4 +1. Let Vi = {0,2,...,N — 2} and V; = {az —
2,a9 — 4,...,a2}. Thus we have SL(N;a;) = G[V41] U G[V2], G[V1] =
G[V,] and G[V4] N G[V2] = @. When ¢;|N, let N = kq;, where k is an

a_ .
integer, E(G[V1]) = U, 1Ej, where E; = {(2j +iq1,2j + (1 + L)q)|i =
0,1,...,k—1} and each E; can be embedded in one page without crossing.

For j1 # j2, Ej, N E;, = @, thus E(G[V1]) needs s; pages to be embedded.
So pn(SL(Njay)) < s3.

When ¢; + N and g1 +IN (I > 1), let N = kq; +t with t > 0, E(G[W1]) =
{(0,91), (g1,2q1),-..,(N —¢,0)} can be embedded in £ 4- 1 pages. Staring
from (0,¢1) up to ((k — 1)¢1,kq1), every k arcs can be embedded in one
page without crossing, total required 4 pages because |E(G[V1])| = &
and remain § arcs unassigned. The remain £ arcs need another page to be
embedded. So pn(G[V1]) < s1. Since G[V1] = G[V;] and G[V41]NG[V3] = &,
pn(SL(Nja1)) < s.

When g1 + N and qi|IN (I > 1), let N = kqy +t with t > 0, E(G[V4]) =

Ui% Ej = {(2 +ia1,2j + (i + 1)a1)[0 < i < 2 —1}. Each Ej can be
embedded in (I + 1) pages because every arc set {(mt + na;,mt + (n +
1)a1)|0 <m <1-1,0<n <k—1} can be embedded in one page, and arc
(25 —a1,25) with 0 < j < 91—215 needs another page. So pn(G[V1]) < s;.
Since G[V1] = G[V2] and G[V1] N G[Ve] = @, pn(SL(N;a1)) < s1. O

In next lemma, we do not discuss these cases which are a; = a3z =
1l,a2 # 2, and a; # a3, a1 =1 or a3 =1 (mod N is omitted).

Lemma 3.3. For positive integer N, a1, az and as, if ged(N,az2) = 2, and
ay, az are odd, then single-loop (SL(N;ay)) can be embedded in four pages
or three pages or one page in vertex ordering (0,aq,2a9,...,N —ay, N —
az +as,...,2a2 + as,ay +a3,a3).

Proof. Let the vertex ordering of SL(N;a;) be (0,a9,2a3,...,N—ag, N —
az +as,...,2a3 + as,az + as,as), where ay is even, and as is odd.

If ay = a3 =1 and ag = 2, then l-arcs can be embedded in two pages.

Ifa; # a3, ay # 1 and a3 # 1, then there is m;, such that a; +m;as = a3
and denote the minimum m; by m. Likewise, there is also a n;, such that
a3z + njas + a3 = N — ay and denote the minimum n; by n. It is easily to
see that all a; -arcs can be embedded in to four pages as follows.

page-1: {(iaz,ia3 + a1)|[t =0,1,...,m — 1}.

page-2 : {(taz,ta3 +a1)|li=m,m+1,..., % -1}
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page-3 : {(as + taz, a3 +taz +a1)[i =0,1,...,n}.

page-4 : {(as + iaz,a3 +iag +a1)li=n,n+1,..., —%’— -1}

If a; = a3z # 1, then there is a k;, such that a3 + k;as + a1 = N — as
and denote the minimum k; by k. Arc set a;-arcs need only there pages to
be embedded as follows.

page-1: {(iag, a2 + a1)|i = 0,1,..., & — 1}.

page-2 : {(asz + iaz2,a3 + taz +a1)]i =0,1,...,k}.

page-3 : {(as +iaz, a3 +ias +a))li=k+1,k+2,..., & —1}. O

Theorem 3.4. Ifd; and d; are even, d; # 2, d; # 2, and d, is odd, where
i,7 and | are distinct, and i,7,l € {1,2,3}, then pn(TL(N;a;,az,a3)) <
s; + 85 + 3. In particular, b and c are positive integer, if d; = 1, then
TL(N;ay,az,a3) = TL(N;1,b,¢) and pn(TL(N;ay,as,a3)) < min{s; +
Sj + 2,8p + Sc + 2}.

Proof. Without loss of generality, we assume that d; and dy are even,
di # 2, ds # 2 and d3 is odd. Let the vertex ordering of TL(N;a;,az,a3)
is (0,2,4,...,N—2,N—2+ag,...,a3+4,a3+2,a3). By Lemma 3.2, a;-arcs
can be embedded in s; pages, and as-arcs can be embedded in s, pages.
By Lemma 3.3, az-arcs can be embedded in three pages. Furthermore, if
d3 = 1, by Lemma 2.3, TL(N;a;,a9,a3) = TL(N;1,b,c). Clearly, b and
c are even. By Lemma 3.3, 1-arcs can be embedded in two pages. So,
pn(TL(N;1,b,¢)) < sp+ sc + 2.

Above all, if d; and d; are even, d; # 2, d; # 2, and d; is odd, where
i,7 and [ are distinct, and 1, j,l € {1,2,3}, then pn(TL(N;a;,az,a3)) <
s; + s; + 3. In particular, if d; = 1, pn(T'L(N; a1, az,a3)) < min{s; + s; +
2,sp + sc +2}. a

Theorem 3.5. If d; and % are even, d; and d; are odd, where i,j and
[ are distinct, and i,5,1 € {1,2,3}, then pn(TL(N;a1,a2,a3)) < s; + 7.
In particular, b is positive integer, if d; = 1, then TL(N;ai,az,a3) =
TL(N;1,b,c) and pn(TL(N; a1, az2,a3)) < min{s; + 6, sy + 6}.

Proof. Without loss of generality, we assume that d; is even, d; # 2, d2 and
d3 are odd. Let the vertex ordering of TL(N;ay,asz,a3) be (0,2,...,N —
2,N—-2+as,...,a3 +2,a3). By Lemma 3.2, aj-arcs needs s; pages to be
embedded. By Lemma 3.3, as-arcs need four pages to be embedded and as-
arcs can be embedded in three pages. So, pn(TL(N;a1,az2,a3)) < s; + 7.
Specially, if d2 = 1 (or dg = 1), then TL(N;a,a2,a3) = TL(N;1,b,c),
where b is even, and c is odd. Therefore, pn(T'L(N;ai,as,a3)) < min{s; +
6,sp + 6}. O

Theorem 3.6. Ifd; =2, d; and d; are odd, where t,5 and | are distinct,
and t,7,l € {1,2,3}, then pn(TL(N;a1,a2,a3)) < 8. In particular, if
d; =1, then pn(TL(N;a1,az,a3)) < 7.
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Proof. Without loss of generality, we assume that d; = 2, dy and d3 are
odd. Let the vertex ordering of TL(N;ai,a2,a3) be (0,a1,2a1,...,N —
a;, N —aj+as,...,2a1 +az,a; +ag,as). Clearly, a;-arcs can be embedded
in one page. Next, we embed as-arcs and as-arcs. By Lemma 3.3, as-arcs
need three pages to be embedded, and az-arcs can be embedded in four
pages. Therefore, pn(TL(N;a,az,a3)) < 8. In particular, if do = 1 (or
d3 = 1), then TL(N;a1,a2,a3) 2 TL(N;1,b,c¢). By Lemma 3.3, 1-arc need
two pages to be embedded. So, pn(T'L(N;a1,a2,a3)) < 7. m|
The next Corollary is a simple application of Theorem 3.6.

Corollary 3.7. In networks ML(N;ai,as,...,a;), if di = 2 for i €
{0,1,...,1}, and d; is odd for any j € {0,1,...,1} with i # j, then
pn(ML(Njaq,as,...,a1)) <4(l—1). In particular, if d; =1, then pn(ML
(Nja1,a9,...,a;)) <4(1—1)—1.

Theorem 3.8. Ifdy, dy and ds are odd, then pn(T'L(N;aq,a2,a3)) <1
In particular, if d; =1 fori € {1,2,3}, then pn(TL(N;ai,a2,a3)) < 10

Proof. Let the vertex ordering of T'L(N;ay,as,a3) be (0,2,4,...,N —

2,N —-2+ay,...,a1 +4,a; + 2,a;). By Lemma 3.2, a;-arcs can be em-

bedded in three pages. as-arcs and asz-arcs can be embedded in four pages

respectively. So, pn(TL(Nj;a1,a2,a3)) < 11. In particular, if d; = 1 (or

dy =1 ordsz=1), by Lemma 2.4 and 3.3, pn(TL(N;a;,a2,a3)) <10. O
The next Corollary is a simple application of Theorem 3.8.

Corollary 3.9. In networks ML(N;a1,ag,...,a1), if d; is odd for any
i€{0,1,...,l}, then pn(ML(N;a1,as,...,a;)) <4l — 1. In particular, if
d; =1, foriec{1,2,3}, then pn(ML(N;aq,as,...,a;)) < 4 —2.

4 Concluding remarks

In this work, we give the upper bounds of tipple-loop networks with
even cardinality. For TL(N;aq,as3,as), double-loop network DL(N; a1, as)
is its subgraph. So, pn(TL(N;ai,as,a3)) > pn(DL(N;aq,az)). For ex-
ample, DL(N;18,6,5) is a subgraph of TL(18;6,5,15). By Theorem 1.1,
pn(DL(N;18,6,5)) < 4. By Theorem 3.1, pn(TL(18;6,5,15)) < 6. The
difference between pn(DL(N;18,6,5)) and pn(TL(18;6,5,15)) is two. As
triple-loop networks are more complicated than double-loop networks, the
upper bounds we give here are not bad. We leave for future study seeing
whether these bounds can be improved.
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