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1 Introduction 

In this paper, we investigate embedding of graph in structures called 
books. Let G be a graph, denote the vertex set of G by V(G) and edge set 
byE( G). A book consists of a spine which is just a line and some number 
of pages each of which is a half-plane with the spine as boundary. A book-
embedding of a graph G consists of placing the vertices of G on the line in 
order and assigning edges of the graph to pages so that edges are assigned 
to same pages without crossing. Page number, denoted by pn(G), is a 
measure of the quality of a book embedding which is the minimum number 
of pages in which G can be embedded. For an easier understanding of page 
number, it is helpful to have a look at the example in Fig. 1. 

OHmann [7] first introduce the page number problem and the problem 
is NP-complete, even if the order of nodes on the spine is fixed ([1, 2]). 
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(b) Embedding of K 4 

Fig.l Embedding of K4, pn(K4) = 2. Ordering of V(G) = {v1,v2,v3,v4}. 
In (b), dashed line represents one page, black lines represent another. 

The book embedding problem has been motivated by several areas of com-
puter science such as sorting with parallel stacks, single-row routing, fault-
tolerant processor arrays and turning machine graphs, see [1]. Book em-
beddings have applications in several contexts, such as VLSI design, fault-
tolerant processing, sorting networks and parallel matrix multiplication 
([1, 4, 5, 6]). 

A multi-loop network, denoted by M L(N; a1, a2, ... , a1), can be repre-
sented by a directed graph with N nodes, 0, 1, ... , N- 1 and lN links of l 
types, where the type -ai links (we call the type -si links si-arcs if there is 
no confusion) are 

v-+ v + ai(mod N), v = 0, 1, ... , N- 1 and i = 0, 1, ... , l. 

A triple-loop networks are denoted byTL(N;a1,a2 ,a3 ). In [8], Yang embed 
double-loop networks with even cardinality in books. 

Theorem 1.1. [8] Let gcd(N;s) = d1,gcd(N,t) = d2 • Then DL(N;s,t) 
can be embedded in a 4-page-book if d1 (or d2 ) is even. In particular, 
DL(N; s, t) can be embedded in a 3-page-book if Nld1t (or Nld2t). 

Theorem 1.2. [8] Let gcd(N;s) = d1,gcd(N,t) = d2. Then DL(N;s,t) 
can be embedded in a 7-page-book if d1 and d2 are odd. Furthermore, 
DL(N; s, t) can be embedded in a 6-page book if d1 = 1 (or d2 = 1}. 

In this paper, we propose schemes to embed the connected triple-loop 
networks with even cardinality in books, then we give upper bounds of page 
number of some multi-loop networks. 
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2 Preliminaries 

Theorem 2.1. (9] M L(N; s1, s2, ... , s1) is strongly connected if and only 
if gcd(N, s1, sz, ... , sz) = 1. 

If gcd(N,a1,a2 ,a3) = d then we can decompose TL(N;a1,az,a3) to d 
copies of TL( Jt; f!J-, 7, !!,[ ). Since if G 1 and G2 are two components of G, 
then pn(G1 n G 2 ) = max{pn(GI),pn(G2 )} ([10]). So, we always assume 
that gcd(N, a1, a2 , a3) = 1 in the following. 

C. Godsil and G. Royle[ll] have shown the next theorem. We use this 
theorem to prove a lemma which is important to this paper. 

Theorem 2.2. [11} If() is an automorphism of the group G, then X(G, C) 
and X(G, ()(C)) are isomorphic. 

In Theorem 2.3, X is a Cayley graph, and Cis an inverse-closed subset 
of G\ e. We use a = b to denote a = b (mod N) if there is no confusion. Let 
gcd(N, ai) = di fori= 1, 2, 3. By Theorem 2.3, we can draw the following 
lemma. 

Lemma 2.3. If di = 1 for some i E {1, 2, 3}, then there are two integers b 
and c such that TL(N; a1 , a2 , a3) TL(N; 1, b, c). 

Proof. Since Z'Jv is an automorphism of ZN, by Theorem 2.3, we have 
TL(N;a 1,az,a3) with u E Z'Jv. Since d; = 1, 
without loss of generality, we assume that i = 1, there are two nonnegative 
integers u and v such that ua1 +vN = 1. Clearly, gcd(u, N) = 1 and ua1 = 
1. Let b = uaz and c = ua3, TL(N;a1,az,a3) TL(N;ua1,uaz,ua3) 
TL(N; 1, b, c). o 

3 Main results 

In this section, we consider the upper bounds of page number of triple-
loop networks and some multi-loop networks. 

Theorem 3.1. If di is even, is odd, and aj = ( )a1, where i, j and 
l are distinct, and i,j,l E {1,2,3}, then pn(TL(N;a1,a2 ,a3)) :::; 6. In 
particulars, pn(TL(N;a1,a2 ,a3)) is reduced one if dial= 0. Further more, 
pn(TL(N;a1,a2 ,a3)) can be reduced two if N = 2aj 

Proof. Without loss of generality, we assume that d1 is even, is odd, 
and a3 = )a2 • Next we derive the method of book embedding. 

Let Ci( i E {0, 1, ... , d1 - 1}) be an ordered Jt-element array (mod N is 
omitted) and 
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N ci = (o + ia2, a1 + ia2, 2a1 + ia2, ... , (d1 -1)a1 + ia2), i is even and i < 

d1 
2' 

-3)a1+ia2 ... ,ia2), iis 

. d1 
odd and t < 2 , 

( 3d1 . 3d1 . 3d1 . ci = 0 + ( 2- t- 1)a2, a1 + ( 2- t -1)a2, 2a1 + ( 2- t- 1)a2, ... 

, -1)a1 + i -1)a2), i is even and i 2 + 1, 

( N 3d1 . N 3d1 . N 
Ci= (d1 -1)a1+( 2 -t-1)a2,(d1 -2)a1+(2-t-1)a2,(d1 -3 

3d1 . 3d1 . ) d1 )a1 + ( 2 -2 -1)a2, ... , 0 + ( 2 -2- 1)a2 , i is odd and i 2 2 , 

Thus = V(G), because ICil = and ci n cj = 0. 
Put Ci in the line with the ordering of Co, C1, ... , CJ_1, then all vertices 

of V(G) are assigned. Use E(Ci) to denote an arc set containing all arcs 
induced by vertex set Ci and use E ( Ci, Cj) to denote an arc set containing 
all arcs from ci to cj. 

There are some properties as follows. 

1. The ordering of V(TL(N; a 1, a 2 , a3)) is Co--+ C1--+ · · ·--+ CJ,-1· 

2. The arc set {E(Ci)l i = 0, 1, ... , d- 1} contains no a2-arcs and a3-
arcs, and {E(Ci, Cj)l i,j = 0, 1, ... , d -1, i =f. j} contains no a1-arcs. 
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c1 c d-2 cd-1 

Fig.2 Property 1. 

c d-2 c d-1 

Fig.3 

,----!----,! • 1:.: .I I . . I I l I 

c1 cd-2 cd-1 

Fig.4 a;-arcs. 

c d-2 c d-1 

Fig.5 a-arcs. 
3 

For an easier understanding of the Property, it is helpful to have a look at 
Fig.2-5. 

By Property 1 and each ordering of Ci fori E {0, 1, ... , d1 -1 }, we have 
that a1-arcs is embedded in one page. Thus we only need to embed a2-arcs 
and a 3-arcs in book. 
Claim 1. Arc set a2-arcs can be embedded in three pages with out crossing. 
In particular, it only need two pages to be embedded if d1a2 = 0. 
Proof. In the ordering of V(TL(N; a1 , a2, a3 )), if i is even and i < -1, 
then E(Ci,Ci+1) a2-arcs and they are {(ja 1 + ia2 ,ja1 + (i + 
1)az)lj from 0 -1} which can be embedded in one page denoted by 

page-1 without crossing. If i is odd and i < then arcs of E(Ci, Ci+l) 
are {(ja1 +ia2 ,ja1 + (i+ 1)a2)lj from f -1 to 0} which can be embedded 
in another page denoted by page-11 without crossing. 

Similarly, when i 2: If i is even, then E(Ci+b Ci) can be embed-
ded in one page without crossing. Since E(Ci+l, Ci) does not cross with 
E(Cj, CHl) for j < E(Ci+1, Ci) can be embedded in page-1. If i is odd, 
then E(Ci+1, Ci) can be embedded in one page. Since E(Ci+l, Ci) does 
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not cross with E(CJ,CJ+I) for j < E(Ci+1,Ci) can be embedded in 
page-II. 

Arc set E(C :!:J._p Cd1-d contains f, a2-arcs, and they are { (ja1 + ( 
2 

1)a2,ja1 + from 0 to f, -1} which can be embedded in page-I. 
Arc set E( C :!:.l., C0 ) contains :/ a 2-arcs, and they are { (ja1 + ( d1 -

2 1 

1)a2,ja1 +d1a 2)lj from f, -1 to 0} which can be embedded in two pages. 
We assign {((d1-1)a2+ia2,d1a2+ia2)li from 0 to in page-II, and 
the other arcs of E(C :!:.l., C0 ) can be embedded in another page. Clearly, this 

2 
is an arrangement without crossing. So a2-arcs can be embedded in three 
pages. In particular, if Nld1a2, then E(C:!:.l., Co)= {((d1- 1)a2, 0), ((d1-

2 

1 )a2 + a1, a!), ... , ( ( d1 - 1 )a2 + ( f, - 1 )a1, ( f, - 1 )a!)} only need one page. 
That is a2-arcs can be embedded in two pages. 
Claim 2. Arc set a3-arcs can be embedded in two page without crossing. 
In particulars, it can be embedded in one page if N = 2a3. 
Proof. Since a3 = and are odd, in the vertex ordering of 
TL(N;a1,a2,a3), E(Ci,Cd1 -1-i) = {(ja1 + ia2,ja1 + (i + :S: 
j :::; f, - 1, 0 :::; i :::; - 1} can be embedded in one page. Arc set 

E(Ci, Cd1 -1-i) = {(ja1 + ia2,ja1 + (i + )a2)IO:::; j:::; f: - 1, :::; i:::; 
d1-1} can be embedded in two pages, and {(ja1 +ia2,ja1 
j :::; N , :::; i :::; d1 - 1} can be embedded in one page and other 
arcs need another one. For i,j E {0, 1, ... , - 1} and i i= j, arcs in 
E(Ci, Cd1 -1-i) do not cross with arcs in E( CJ, Cd1 _ 1_J ). Since any a3-arcs 

:!:.l__1 :!:.l__1 
belong to E(Ci, cdt-1-i)) E(Cdt-1-i, Ci)), a3-arcs can be 
embedded in two pages. 

When N = 2a3, in the vertex ordering of TL(N;a 1,a2,a3), for i,j E 
{0, 1, ... , and i i= j, arcs in E( Ci, Cd1 -1-i) and arcs in E(Cd1 -1-i,cJ, 
where these arcs have same end vertices, have reverse direction, and they 
can be embedded in one page. 

Combining Claim 1 and Claim 2, we have that pn(TL(N; a1, a2, a3)) :::; 
6. In particulars, pn(TL(N;a1,a2,a3 )) is reduced one if d;al = 0. Further 
more, pn(TL(N;a1,a2,a3)) can be reduced two if N = 2aj. D 

Let N and a; are even, and assume a; = q; fori = 1, 2, 3. When q;IN, 
lets; = ¥· When q; f N, lets;= ¥ + 1. When q; f N, assume N = kq; +t, 
where k and tare positive integer. Thus lets;= q,2t(l + 1), where lis the 
minimum positive integer such that q;llN. For arc set E, we use G[E] to 
denote induced subgraph by E. Since symmetry of triple-loop networks, 
G[a;-arcs] G[(N- a;)-arcs]. Thus we can assume q;:::; J¥-, so Si:::; IJ¥-l 
Lemma 3.2. For positive integers N, l, a1 and a 2, if N and a 1 are even, 
a1 f lN (l > 1), a2 is odd, and gcd(N, a1) = d i= 2, then single-loop 
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(SL(N; al)) can be embedded in s 1 pages in vertex ordering (0, 2, 4, ... , N-
2, a2- 2, ... , a2 + 4, a2 + 2, a2) . 

Proof. Let the vertex ordering of single-loop SL(N; al) be (0, 2, ... , N-
2, a2 - 2, ... , a2 + 2, a2), where a 2 is an arbitrary odd integer and a2 < N. 
Assume a1 = q1, if q1IN, then s1 = sis an positive integer. If 
q1 f N, then s1 = + 1. Let V1 = {0,2, ... ,N- 2} and V2 = {a2-
2, a2 - 4, ... , a2}. Thus we have SL(N; a1) = G[V1] U G[V2], G[V1] 
G[V2] and G[V1] n G[V2] = 0. When q1IN, let N = kq1, where k is an 

integer, E(G[Vl]) = Ej, where EJ = {(2j + iq1, 2j + (i + 1)ql)li = 
0, 1, ... , k- 1} and each Ej can be embedded in one page without crossing. 
For j 1 =1- j 2 , Eh nE22 = 0, thus E(G[Vl]) needs s1 pages to be embedded. 
So pn(SL(N; a1)) :::; s1. 

When q1 {Nand q1 f lN (l > 1), let N = kq1 +t with t > 0, E(G[Vl]) = 
{(0, ql), (q1, 2q1), ... , (N- q, 0)} can be embedded in%+ 1 pages. Staring 
from (0, ql) up to ((k- 1)q1, kql), every k arcs can be embedded in one 
page without crossing, total required pages because IE(G[V1])1 = 
and remain arcs unassigned. The remain arcs need another page to be 
embedded. So pn(G[V1]):::; s1. Since G[V1] G[V2] and G[V1] nG[V2] = 0, 
pn(SL(N;a1)):::; s1. 

When q1 {Nand q1llN (l > 1), let N = kq1 +t with t > 0, E(G[V1]) = 
ql-t 

EJ = {(2j + ia1,2j + (i + 1)a1)IO:::; i:::; -1}. Each Ej can be 
embedded in (l + 1) pages because every arc set { ( mt + na1, mt + ( n + 
l)a1)IO:::; m:::; l-1, 0:::; n:::; k -1} can be embedded in one page, and arc 
(2j - a1, 2j) with 0 :::; j :::; 9';t needs another page. So pn( G[V1]) :::; s1. 
Since G[V1] G[V2] and G[V1] n G[V2] = 0, pn(SL(N; a1)):::; s1. D 

In next lemma, we do not discuss these cases which are a 1 = a3 = 
1, a2 =1- 2, and a1 =1- a3, a1 = 1 or a3 = 1 (mod N is omitted). 

Lemma 3.3. For positive integer N, a 1 , a2 and a3, if gcd(N, a2) = 2, and 
a 1 , a3 are odd, then single-loop (SL(N; al)) can be embedded in four pages 
or three pages or one page in vertex ordering (0, a2, 2a2 , ... , N- a2, N-
a2 + a3, ... , 2a2 + a3, a2 + a3, a3). 

Proof. Let the vertex ordering of SL(N; a1) be (0, a2, 2a2, ... , N -a2, N-
a2 + a3, ... , 2a2 + a3, a2 + a3, a3), where a2 is even, and a3 is odd. 

If a1 = a3 = 1 and a 2 = 2, then l-ares can be embedded in two pages. 
If a1 =1- a3, a1 =1- 1 and a3 =1- 1, then there is mi, such that a 1 +mia2 = a3 

and denote the minimum mi by m. Likewise, there is also ani, such that 
a3 + nia2 + a 1 = N- a2 and denote the minimum ni by n. It is easily to 
see that all a 1 -arcs can be embedded in to four pages as follows. 

page-1: {(ia2, ia2 + a 1)li = 0, 1, ... , m -1}. 
page-2 : { ( ia2, ia2 + al) I i = m, m + 1, ... , - 1}. 
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page-3: {(a3 + ia2, a3 + ia2 + al)li = 0, 1, ... , n}. 
page-4 : { ( a3 + ia2, a3 + ia2 + a1) I i = n, n + 1, ... , - 1}. 
If a1 = a3 f- 1, then there is a ki, such that a3 + kia2 + a1 = N - a2 

and denote the minimum ki by k. Arc set a1-arcs need only there pages to 
be embedded as follows. 

page-1: {(ia2, ia2 + al)li = 0, 1, ... , 1}. 
page-2: {(a3 + ia2, a3 + ia2 + a1)li = 0, 1, ... , k }. 
page-3: {(a3 + ia2, a3 + ia2 + al)li = k + 1, k + 2, ... , 1}. D 

Theorem 3.4. If di and dj are even, d; f- 2, dj f- 2, and dt is odd, where 
i,j and l are distinct, and i,j,l E {1,2,3}, then pn(TL(N;a1,a2,a3)) 
si + Sj + 3. In particular, b and c are positive integer, if dt = 1, then 
TL(N;a1,a2,a3) TL(N; l,b,c) and pn(TL(N;a1,a2,a3)) min{s; + 
Sj + 2, Sb + Sc + 2}. 

Proof. Without loss of generality, we assume that d1 and d2 are even, 
d1 -1 2, d2 #2 and d3 is odd. Let the vertex ordering of TL(N; a 1, a2, a3) 
is (0, 2, 4, ... , N -2, N -2+a3, ... , a3+4, a3+2, a3). By Lemma 3.2, a1-arcs 
can be embedded in s1 pages, and a 2-arcs can be embedded in s2 pages. 
By Lemma 3.3, a3-arcs can be embedded in three pages. Furthermore, if 
d3 = 1, by Lemma 2.3, TL(N;a 1,a2 ,a3) TL(N;l,b,c). Clearly, band 
c are even. By Lemma 3.3, l-ares can be embedded in two pages. So, 
pn(TL(N;l,b,c)) Sb+sc+2. 

Above all, if di and dj are even, di f- 2, dj f- 2, and dt is odd, where 
i,j and l are distinct, and i,j,l E {1,2,3}, then pn(TL(N;a1,a2 ,a3)) 
si + Sj + 3. In particular, if dt = 1, pn(T L(N; a1, a2, a3)) min{ si + Sj + 
2,sb+sc+2}. D 

Theorem 3.5. If di and are even, dj and dt are odd, where i, j and 
l are distinct, and i,j,l E {1,2,3}, then pn(TL(N;a1,a2,a3)) Si + 7. 
In particular, b is positive integer, if dj = 1, then TL(N;a 1,a2,a3) 
TL(N;l,b,c) andpn(TL(N;a1,a2 ,a3)) 

Proof. Without loss of generality, we assume that d1 is even, d1 f- 2, d2 and 
d3 are odd. Let the vertex ordering of TL(N; a 1, a2, a3) be (0, 2, ... , N-
2, N- 2 + a3, ... , a3 + 2, a3). By Lemma 3.2, a1-arcs needs s1 pages to be 
embedded. By Lemma 3.3, a 2-arcs need four pages to be embedded and a3-

arcs can be embedded in three pages. So, pn(TL(N;a1,a2 ,a3)) Si + 7. 
Specially, ifd2 = 1 (or d3 = 1), then TL(N;a 1,a2,a3) TL(N;l,b,c), 
where b is even, and cis odd. Therefore, pn(TL(N; a 1, a2, a3)) s; + 
6,sb+6}. D 

Theorem 3.6. If di = 2, dj and dt are odd, where i, j and l are distinct, 
and i,j,l E {1,2,3}, then pn(TL(N;a1,a2,a3)) 8. In particular, if 
dj = 1, then pn(TL(N; a1, a2, a3)) 7. 
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Proof. Without loss of generality, we assume that d1 = 2, d2 and d3 are 
odd. Let the vertex ordering of TL(N; a1, a2, a3) be (0, a1, 2a1, ... , N-
a1, N -a1 +a2, ... , 2a1 +a2, a1 +a2, a2). Clearly, a1-arcs can be embedded 
in one page. Next, we embed a2-arcs and a3-arcs. By Lemma 3.3, a2-arcs 
need three pages to be embedded, and a3-arcs can be embedded in four 
pages. Therefore, pn(TL(N;a1,a2,a3)):::; 8. In particular, if d2 = 1 (or 
d3 = 1), then T L(N; a1, a 2, a3) TL(N; 1, b, c). By Lemma 3.3, 1-arc need 
two pages to be embedded. So, pn(TL(N;a1,a2,a3 )):::; 7. 0 

The next Corollary is a simple application of Theorem 3.6. 

Corollary 3.7. In networks ML(N;a1,a2, ... ,a1), if di = 2 fori E 
{0, 1, ... , l}, and dj is odd for any j E {0, 1, ... , l} with i -1- j, then 
pn(M L(N; a1, a 2, ... , a1)) :::; 4(1-1). In particular, if dj = 1, then pn(M L 
(N;a1,a2, ... ,a!)):::; 4(1-1) -1. 

Theorem 3.8. Ifd1, d2 andd3 are odd, thenpn(TL(N;a1,a2,a3)):::; 11. 
In particular, ifdi = 1 fori E {1,2,3}, thenpn(TL(N;a1,a2,a3)):::; 10. 

Proof. Let the vertex ordering of T L(N; a1, a2, a3) be (0, 2, 4, ... , N -
2, N - 2 + a1, ... , a1 + 4, a1 + 2, a1). By Lemma 3.2, a1-arcs can be em-
bedded in three pages. a2-arcs and a3-arcs can be embedded in four pages 
respectively. So, pn(TL(N;a1,a2,a3)):::; 11. In particular, if d1 = 1 (or 
d2 = 1 or d3 = 1), by Lemma 2.4 and 3.3, pn(TL(N;a1,a2,a3)):::; 10. 0 

The next Corollary is a simple application of Theorem 3.8. 

Corollary 3.9. In networks ML(N;a1,a2, ... ,ai), if di is odd for any 
i E {0, 1, ... , l}, then pn(M L(N; a1, a2, ... , a1)) :::; 41- 1. In particular, if 
di = 1, fori E {1, 2, 3}, then pn(ML(N; a1, a 2, ... , a!)):::; 41- 2. 

4 Concluding remarks 
In this work, we give the upper bounds of tipple-loop networks with 

even cardinality. ForT L(N; a1, a2, a3), double-loop network DL(N; a 1, a2) 
is its suhgraph. So, pn(TL(N; a1, a 2, a3)) 2: pn(DL(N; a 1, a 2)). For ex-
ample, DL(N; 18, 6, 5) is a subgraph of T£(18; 6, 5, 15). By Theorem 1.1, 
pn(DL(N; 18, 6, 5)) :::; 4. By Theorem 3.1, pn(T £(18; 6, 5, 15)) :::; 6. The 
difference between pn(DL(N; 18, 6, 5)) and pn(T £(18; 6, 5, 15)) is two. As 
triple-loop networks are more complicated than double-loop networks, the 
upper bounds we give here are not bad. We leave for future study seeing 
whether these bounds can be improved. 
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