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1 Introduction

Throughout the paper, G = (V, E) is a connected undirected simple graph
with [V| = n and |E| = m. If m = n + ¢ — 1, then G is called a c-cyclic
graph. Especially, if ¢ = 1,2,3, then G is called a unicyclic, bicyclic, or
tricyclic graph, respectively. The neighbors of a vertex v is denoted by
N(v). Write d(v) for the degree of vertex v. Specially, A = A(G) denotes
the maximum degree of G.

Let A(G) denote the adjacency matriz of G. Let D(G) be the diagonal
matrix whose (%,¢)-entry is d(v;). The Laplacian matriz of G is L(G) =
D(G) — A(G), and the signless Laplacian matriz of G is Q(G) = D(G) +
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A(G). The largest eigenvalues of A(G), L(G) and Q(G) are called the
adjacency, Laplacian, and signless Laplacian spectral radii, respectively.
It is well-known that graph spectrum has great important applications in
many fields. Several graph spectra, i.e., spectra of A(G), L(G) and Q(G),
had been defined in [1]. The spectra of A(G), L(G) are well studied (for
instance see [2-10]), but the spectrum of Q(G) seems to be less well known.
It is not until recent years, some researchers found that the spectrum of
Q(G) has a strong connection with the structures of graph (see [11,12]).
For the new results on the signless Laplacian spectrum, one can refer to
[11-14].

The largest adjacency spectral radius in the class of unicyclic graphs of
given order was firstly determined in [2]. Following this, Guo [3] determined
the first six largest adjacency spectral radii in the class of unicyclic graphs
of given order. After then, the first three largest adjacency spectral radii in
the class of bicyclic graphs of given order were given in [4]. Similarly, the
researchers had investigated the Laplacian spectral radius in the class of
unicyclic, bicyclic and tricyclic graphs. Up to now, the first to thirteenth
largest Laplacian spectral radii were given in the class of unicyclic graphs
of given order in [5-7]. After then, the first eight largest Laplacian spectral
radii in the class of bicyclic graphs of given order were given in [8,9].
Recently, the first nineteen largest Laplacian spectral radii in the class of
tricyclic graphs of given order were determined in [10]. Motivated by the
above results on A(G) and L(G), we shift our goals to the investigation of
signless Laplacian spectral radius. Recently, we had identified the first four
largest signless Laplacian spectral radii in the class of unicyclic graphs of
given order in [15]. This paper will present the first two (resp. four) largest
signless Laplacian spectral radii together with the corresponding graphs in
the class of bicyclic (resp. tricyclic) graphs of given order.

Since A(G) is symmetric, the eigenvalues of A(G) can be arranged as
follows: p1(G) > p2(G) > -+ > pnp(G). The adjacency spread of the graph
G, denoted by SA(G), is defined as (see [16]):

SA(G) = p1(G) — pn(G).

It is well known that L(G) is positive semidefinite so that its eigenvalues
can be arranged as follows: A\ (G) > A2(G) > -+ > Ap—1(G) > A\ (G) =0,
where A,—1(G) > 0 if and only if G is connected and is called the algebraic
connectivity of the graph G. Because A\,(G) = 0, the Laplacian spread of
the graph G, denoted by SL(G), is defined as [17]

SL(G) = M(6) = An-1(G).

Note that Q(G) is also positive semidefinite [14] and its eigenvalues can
be arranged as: pi(G) > p2(G) > -+ > pn(G) > 0. Thus, the signless
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Laplacian spread of the graph G, denoted by SQ(G), is defined as
5Q(G) = m(G) — pn(G).

This definition firstly appeared in the conjecture 25 of the literature [12],
but well studied in [13] by the name of Q-spread. In [14], it is called signless
Laplacian spread to distinguish the known notations adjacency spread and
Laplacian spread.

The adjacency spread of a graph had received much attention. In [18],
Petrovi¢ determined all connected graphs with adjacency spread at most
4. In [16,19], some lower and upper bounds for the adjacency spread of
a graph were given. After then, the maximum adjacency spreads among
all unicyclic graphs and all bicyclic graphs of given order were determined
in [20] and [21], respectively. Similarly, the maximum and minimum Lapla-
cian spreads among all trees of given order were identified in [17], the max-
imum and minimum Laplacian spreads among all unicyclic graphs of given
order were determined in [22] and [23], respectively, the maximum Lapla-
cian spread among tricyclic graphs of given order was identified in [24].
However, the signless Laplacian spread seems less well-known because it
was introduced somewhat later [13,14]. Up to now, there are only very
limited results on the signless Laplacian spread. Some lower and upper
bounds for the signless Laplacian spread of a graph were given in [13,14],
and the largest signless Laplacian spread in the class of unicyclic graphs
of given order was determined in [14]. In this paper, by using different
method from [13,14], we determine the first two (resp. four) largest sign-
less Laplacian spreads together with the corresponding graphs in the class
of bicyclic (resp. tricyclic) graphs of given order.

This paper is organized as follows: The first two (resp. four) largest
signless Laplacian spectral radii among the class of bicyclic (resp. tricyclic)
graphs of given order are presented in Section 2. In Section 3, we determine
the first two (resp. four) largest signless Laplacian spreads among the class
of bicyclic (resp. tricyclic) graphs of given order.

2 The first two (resp. four) largest signless
Laplacian spectral radii of bicyclic (resp.
tricyclic) graphs

In the sequel, the notations B, 7, are used to denote the class of bicyclic

graphs and tricyclic graphs of order n, respectively.

Lemma 2.1 [25] p1(G) < maz{d(v) + m(v) : v € V}, where m(v) =

2. dw)/d(v).

u€N (v)
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Lemma 2.2 [26,27] If G is a graph with at least one edge, then py (G) >
M(G) > A+ 1. If G is connected, the first equality holds if and only if G
is bipartite.

Proposition 2.1 Suppose ¢ > 0 and G is a c-cyclic graph on n vertices
with A <n —2. If n > maz{c+ 5,2c+ 3}, then u1(G) < n.

Proof. By Lemma 2.1, we only need to prove that maz{d(v) + m(v) :
veV}<n.

Suppose maz{d(v) + m(v) : v € V'} occurs at the vertex u. Three cases
arise d(u) =1, d(u) =2, 0or 3 < d(u) <n-—2.

Case 1. d(u) = 1. Suppose v € N(u). Since m(u) =d(v) < A <n-—2,
thus d(u) + m(u) <n—-1<mn.

Case 2. d(u) = 2. Suppose that v,w € N(u). Note that G is a c-cyclic
graph, then |[N(v) N N(w)| < ¢+ 1 and |N(v) U N(w)| < n. Therefore,
d(u) +m(u) = 2+ L) <9 4 ndetl <y

Case 3. 3 < d(u) < n—2. Suppose G has m edges. Note that 3 < d(u) <
n—2, then d(u)+m(u) < d(u)-&—%t—l— = d(u)-l-{—%. Next we shall
prove that d(u) — 1+ %—;—’(’f)—l < n, equivalently, d(u)(n+1—d(u)) > 2m—1.
Once this is proved, we are done. Let f(z) = (n+ 1 — z)z.

When z € [3, 2], since f/(z) = n+1— 2z > 0, then f(z) > f(3) =
3(n—2)>2(n+c—-1)—-1=2m—-1.

When z € [2,n — 2], since f/(z) = n+1—2z < 0, then f(z) >
fmn—2)=3(n-2)>2n+c—-1)—-1=2m—1.

By combining the above arguments, the assertion follows. |

Corollary 2.1 (1) Suppose G € B,. Ifn > 7 and A < n — 2, then
p1(G) < n. (2) Suppose G € Tp. If n > 9 and A < n—2, then u1(G) < n.

It is well-known that A (G) < n (for example see [26]). For u1(G), we have

Corollary 2.2 Suppose ¢ > 0 and G is a c-cyclic graph with order n >
maz{c+ 5,2c + 3}, then (1) p1(G) > n if and only if A =n —1 and G
contains cycle of length odd. (2) u1(G) =n if and only if A =n —1 and
G is bipartite.

Proof. It can be proved similarly with Proposition 2.1 that if A < n — 2,
then p1(G) < n because n > maz{c + 5,2c + 3}. Next we only need to
consider the case of A = n—1. If A = n—1 and G is bipartite, then
p1(G) = n follows from Lemma 2.2. If A =n — 1 and G contains cycle of
length odd, by Lemma 2.2 n = A\;(G) < u1(G). [ |

In the following, V\{u} is written as V' — u for convenience. Let Hy, Hy
be the bicyclic graphs on n > 7 vertices as shown in Fig. 1.
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H, Hy

Fig. 1

Theorem 2.1 Suppose G € B,, and n > 7. Then, (1) p1(G) < pi1(Hy),
the equality holds if and only if G = Hy, where pi(Hp) is the mazimum
root of the equation A3 — (n + 4)A%? +4n) — 8 = 0. (2) If G % Hy, then
11(G) < p1(Hz), the equality holds if and only if G = Hy, where py(Hs) is
the mazimum root of the equation A3 — (n + 3)A\? + 3n\ — 8 = 0.

Proof. Let ®(G,\)=det(A — Q(G)) denote the signless Laplacian char-
acteristic polynomial of G. By a straightforward computation, we have

O(Hi,A) = (A= 1"\ =2)(A3 = (n+4)A\2 + 4n) - 8). (1)
B(Hy,\) = (A= 1)"" 1A = 3)(A% — (n+ 3)A% + 3n) — 8). (2)
Since ®(H1,n) = (n—1)""%(16—8n) < 0 and A_lir_n‘_ ®(Hi, A) = 400, thus

pu1(Hy) > n. With the same reason, pui(Hz) > n. Suppose that G € B,
and p1(G) > n, Corollary 2.1 implies that A = n — 1. Next we shall show
that G 2 H, or G & H,.

Assume that v € V(G) such that d(u) = n — 1. It is easy to see
that uv € E(G) holds for every v € V — u. Since G € B, then 1 <
maz{|N(u)NN(v)|: v € V—u} < 2. Thus, two cases should be considered.

Case 1. maz{|N(u)NN@W)| : v € V —u} = 2. It is easy to see that
G~ H,.

Case 2. maz{|[N(u)N N(v)| :v € V —u} = 1. It is easy to see that
G = H,.

When A > n > 7, since ®(Ha, \) —®(Hy, A) = (A=1)""4((A=n)A+8) >
0, thus p3 (Hy) > p1(Ha) because py(Hy), p1(Hz) > n.

By Egs. (1)-(2) and the above arguments, the conclusion follows. 1

HHE S P

Fig. 2

Let F1, Fs, F3, Fy, F5 be the tricyclic graphs on n > 9 vertices as shown
in Fig. 2.
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Lemma 2.3 Suppose G € T, and n > 9. If u1(G) > n, then G should be
the graph Fy, Fy, F3, Fy or Fs.

Proof. Since G € 7, and p1(G) > n, Corollary 2.1 implies that A =n—1.
Next we shall show that G = F;, where 1 <7 < 5.

Assume that v € V(G) such that d(u) = n — 1. It is easy to see that
uwv € E(QG) holds for every v € V —u. Since G € Ty, then 1 < maz{|N(u)N
N(v)|:v € V —u} < 3. Thus, three cases should be considered.

Case 1. maz{|[N(u) N N(v)| : v € V —u} = 3. It is easy to see that
G F.

Case 2. maz{|[N(u)N N(v)| : v € V —u} = 2. It is easy to see that
G 2 F, or F3 or Fy.

Case 3. maz{|[N(u)NN(v)| : v € V —u} = 1. It is easy to see that
G Fs. [ |

Lemma 2.4 If n > 9, then uy(F1) = w(F2) > pi(F3) > w(Fy) >
p1(Fs) > n.

Proof. By an elementary calculation, we have

BFLAN)=A=1D"S5A =22\ - (n+5)X2+5n1-12).  (3)
B(F\) =(A=1)" A =22\ = (n+5)A2 +5n)—12).  (4)

B(F3,0) = (A —=1D)" 53X =3) (A = (n 4 6)A\3 + (6n + 7)\?

—(Tn+ 12)A + 20). (5)
B(Fy ) = (A =D S5A=2) (M = (n +7)A3 + (Tn + 12)\?

—(12n + 12)\ + 40). (6)

B(Fs, ) =(A=1)"3A=32N - (n+3)A\2+3n2—-12). (7)

By Egs. (3) and (4), p1(F1) = pi1(Fz). Since n > 9 and ®(Fy,n) =
—12(n - 1)"5(n - 2)2 < 0 and Aﬁmw@(ﬂ,/\) = 400, thus p(Fy) > n.
With the same reason, p;(F;) > n also holds for 2 <7 < 5.

We divide the proof into the next three processes.

(1) p1(F2) > p1(F3). Rewrite Eq. (4) as ®(Fp, A) = (A = 1)*7° fi(A),
where f1(A) = A° — (n+9)A*+ (9n+24)A3 — (24n+32) A2 4 (20n +48) A — 48.
Thus, p;(F3) equals the maximum root of the equation f;(A) = 0. Rewrite
Eq. (5) as ®(F3,)) = (A — 1)"3f3(\), where fo(\) = A5 — (n + 9)\* +
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(9n + 25)A3 — (25n + 33)A2 + (21n + 56)A — 60. Thus, u;(F3) equals the
maximum root of the equation fa(A) = 0. Let ¥1(A) = fa(A\) — fi(A) =
A —(n+1)A2+ (n+8)A—12. When A > n > 9, since ¥} () = 3A\% —2(n +
DA+ (n+8) = A(38A—2n—2)+n+8 > 0, then 91 (A\) > ¢¥1(n) = 8n—12 > 0.
Thus, when A > n > 9, fa(A) > f1(A). This implies that pq(F2) > p1(F3)
because p1(F2), p1(F3) > n.

(2) p1(F3) > p1(Fy). Rewrite Eq. (6) as ®(Fy, A) = (A — 1)" 5 f3(N),
where f3(A) = A° — (n+9)A%+ (9n+26) A3 — (2614 36) A? + (24n+64) X — 80.
Thus, w1 (Fy) equals the maximum root of the equation f3(A\) = 0. Let
Wa(A) = f3(X) = f2(A) = A% — (n+3)A2 + (3n+8)A — 20. When A >n > 9,
since P4(A) =322 = 2(n+3)A+ (B3n +8) = A(BA —=2n —6) +3n +8 > 0,
thus ¥2(A) > 2(n) = 8n — 20 > 0. Thus, when A > n > 9, f3(A) > fa(A).
This implies that pi(F3) > p1(Fy) because pi(F3), p1(Fy) > n.

(3) p1(Fu) > p1(Fs). Rewrite Eq. (7) as &(F5,A) = (A = 1)"°fa(N),
where f4(A) = A° = (n+9)A*+(9n+27) A3 — (27n+39) A2+ (27n+72) A — 108.
Thus, p1(Fs) equals the maximum root of the equation fg(A) = 0. Let
P3(A) = fa(A) = f3s(A) = A° = (n+3)A?+ (3n+8)A—28. When A >n > 9,
since P¥43(A) = 3X2 —2(n+3)A+ (3n +8) = A(BA —2n — 6) + 3n + 8 > 0,
thus ¥3(\) > ¢3(n) = 8n — 28 > 0. Thus, when A > n > 9, fa(A) > f3(N).
This implies that w1 (Fy) > u1(Fs) because pi(Fy), pi(F5) > n. [ |

By combining Corollary 2.1, Lemmas 2.3-2.4, and Egs. (3)-(7), we have $

Theorem 2.2 Suppose G € T, andn > 9. Then, (1) pu1(G) < pi(Fr),
the equality holds if and only if G = F) or G & F;, where pi(F}) is the
mazimum root of the equation A3 — (n +5)A2 +5nA —12 =0. (2) If G ¢
{F, F2}, then p1(G) < u1(F3), the equality holds if and only if G = F3,
where py (F3) is the mazimum root of the equation \* — (n + 6)A\3 + (6n +
7))\2 - (7’I’L+ 12))\+20 =0. (3) IfG ¢ {Fl,Fg,F3}, then ,u.l(G) < /L](F4),
the equality holds if and only if G = Fy, where pi(Fy) is the mazimum
root of the equation A* — (n + 7)A3 + (Tn + 12)A2 — (12n 4 12)X + 40 = 0.
(4) If G ¢ {F1, Fy, F3,Fy}, then p1(G) < pi(Fs), the equality holds if
and only if G =& F5, where p1(F5) is the mazimum root of the equation
A —(n+3)A2+3nA - 12=0.

3 The first two (resp. four) largest signless
Laplacian spreads of bicyclic (resp. tri-
cyclic) graphs

Lemma 3.1 If G is a bicyclic graph on n > 12 vertices with A < n — 2,
then p1(G) <n—0.5.
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Proof. By Lemma 2.1, we only need to prove that maz{d(v) + m(v) :
veV}<n-0.5.

Suppose maz{d(v) + m(v) : v € V} occurs at the vertex u. Three cases
arise d(u) =1, d(u) =2, or 3<d(u) <n - 2.

Case 1. d(u) = 1. Suppose v € N(u). Since m(u) =d(v) < A <n -2,
thus d(u) + m(u) <n—1<n-0.5.

Case 2. d(u) = 2. Suppose that v,w € N(u). Note that G is a bicyclic
graph, then |N(v) N N(w)| < 3 and |N(v) U N(w)| < n. Therefore, d(u) +
m(u) = 2 + 4L <9 4 nd3 <y 05,

Case 3. 3 <d(u) <n—2. Note that 3 < d(u) <n—2and G hasn+1

edges, then d(u)+m(u) < d(u)+%ﬂ d(u)—1+ 2’;“ Next we shall

prove that d(u) — 1 + 22+l Pl ) < n— 0.5, equivalently, d(u)(n + 0.5 — d(u)) >
2n + 1. Let f(z) = (n+0.5 — z)z.

When z € [3, 2%H] since f'(z) =n+0.5—2z > 0, then f(z) > f(3) =
3(n —2.5) > 2n + 1.

When = € [2%tL n — 2], since f'(z) = n+ 0.5 — 2z < 0, then f(z) >
f(n—2)=25(n—-2)>2n+1.

This completes the proof of this result. |

Theorem 3.1 IfG is a bicyclic graph onn > 12 vertices and G & {Hq, Hg}
then SQ(H;) > SQ(Hz) > SQ(G).

Proof. Let f5(A) = A3 — (n+4)A?2 +4n)\ —8 and fs(\) = A3 — (n+3)\2 +
3nA — 8. Since f5(0) = =8 < 0, f5(1) =3n—11 >0, fs5(n) = -8 <0
and fs(n +1) = n?2 —2n — 11 > 0, by Eq. (1) we can conclude that
0<pn(Hi1) <landn< p(Hy)<n+1l

Similarly, since fg(0) = —8 <0, f6(0.5) = 1(10n — 69) > 0, fg(n) =
-8 < 0and feg(n+1) =n2—n-10 > 0, by Eq. (2) it follows that
0 < pn(Hz) < 0.5 and n < p1(H2) < n+ 1, this implies that SQ(Hz) =
,ul(Hg) - ,un(Hz) >n —0.5.

When 0 < A < 1, fs(A)—=fe(A) = —(A=n)A > 0, thus p,(H1) < pn(Ha)
because 0 < pn,(H1) <1 and 0 < pp(Hz2) < 0.5. By Theorem 2.1, we have

SQ(H1) = p1(Hy) — pn(H1) > pa1(Hz) — pn(Hz) = SQ(Hz) > n — 0.5.

Moreover, note that p,(G) > 0 and G & {H;, Hs}, by Lemma 3.1 it follows
that SQ(G) = 11(G) — 1n(G) < 11(G) < n— 0.5 < SQ(Ha).
By combining the above arguments, the result follows. [ |

Remark 1. By Theorems 2.1 and 3.1, the graphs which share the first

two largest signless Laplacian spectral radii even share the first two largest

signless Laplacian spreads in the class of bicyclic graphs on n > 12 vertices.
It can be proved similarly with Lemma 3.1 that
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Lemma 3.2 If G is a tricyclic graph on n > 16 vertices with A < n — 2,
then p1(G) <n —0.5.

Lemma 3.3 If n > 16, then SQ(F}) = SQ(Fs) > SQ(F3) > SQ(Fy) >
SQ(Fs) >n—0.5.

Proof. By Egs. (3) and (4), it follows that SQ(F}) = SQ(F>). We divide
the proof into the next three processes.

(1) SQ(F2) > SQ(F3). If 16 < n < 30, it can be checked readily that
SQ(Fy) > SQ(F35) by Egs. (4) and (5). Next we may suppose that n > 31.
Note that f1(0) = —48 < 0, fi(1) = 4n —16 > 0, f1(3) = 6n — 30 > 0,
f1(5) = —108 < 0 and f1(n+5) = 5n*+55n3+183n2+153n—108 > 0, then
0 < pn(F2) < 1, pp—1(F2) =1 by Eq. (4). Note that f»(0) = —60 < 0,
fo(1) = 4n — 20 > 0, f2(2) = 8 = 2n < 0 and f3(4) = 4n — 44 > 0,
f2(8) = 6980—920n < 0 and fo(n+5) = 5n*+55n+188n% 42061420 > 0,
then 0 < pn(F3) <1, pn—1(F3) =1 by Eq. (5).

Let a; be the minimum root of 1;(A) = 0. Since ¥;(0) = —12 < 0,
¥1(0.625) = £15(120n — 3659) > 0, 11(1) = —4 < 0 and ¢1(n) = 8n —12 >
0, then 0 < a; < 0.625.

It is easy to see that

f1(0) = (W = 8A +8)y1 (A) + m(N), (8)
F2(0) = (X% = 8A +9)91(A) + m (W), (9)

where 71 (A) = —4(2n — 13)A2 + 4(3n — 28)\ + 48.

When 0 < A < 0.625, since 7{(A) = —8(2n — 13)\ + 4(3n — 28) >
4(3n — 28) — 0.625 x 8(2n — 13) = 2n — 47 > 0, then v;(A) > v1(0) =
48 > 0. Recall that 0 < oy < 0.625, by Egs. (8) and (9) it follows that
f1 (al) = fg(al) = 'yl(al) > 0. This implies that pn(Fg), ,un(F3) S (0,&1).
Moreover, when 0 < A < aj, since fa(A) — fi(A) = ¥1(A) < 0, then
tn(F2) < pn(F3). By Theorem 2.2, we have

SQ(F2) = p1(F2) — pn(F) > p1(F3) — pn(F3) = SQ(F3).

(2) SQ(F3) > SQ(F4). Note that f3(0) = —80 < 0, f3(1) =6n—34 > 0,
f3(2.5) = 35(235 —30n) < 0, f3(3) =4 > 0, f3(5) = 90 — 30n < 0 and
f3(n +5) = 5n* + 5513 + 193n? + 249n + 90 > 0, then 0 < u,(Fy) < 1,
pn-1(Fy) = 1 by Eq. (6).

Let ap be the minimum root of ¥(A) = 0. Since ¥2(£) = =% (n® —
6n2 + 54n — 108) < 0, (1) = 2n — 14 > 0, 92(5) = 70 — 10n < 0 and
P2(n) =8n—20 >0, then & < ay < 1.

It is easy to see that

F2(0) = (A = 6A = 1)y (A) + 72(N), (10)
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f3(A) = (A = 602 (A) + 72(N), (11)
where v2(A) = —8(n — 4)A% + 8(3n — 7)\ — 80.

When & < A < 1, since ¥5(A) = —16(n —4)A+8(3n —7) > 8(3n —7) —
16(n—4) = 8n+8 > 0, then 12(X) > 12(2) = 1§ (4n?—39n+72) > 0. Recall
that 2 < ay < 1, by Egs. (10) and (11) it follows that fa(as) = f3(az) =
va(az2) > 0. This implies that p,(F3), pn(Fs) € (0,a2). Moreover, when
0 < A < ag, since f3(A) — fa(A) = ¢2(A) <0, then pn(F3) < pn(Fs). By
Theorem 2.2, we have

SQ(F3) = p1(F3) — pa(F3) > p1(Fa) — pn(Fy) = SQ(Fy).

(3) SQ(Fs) > SQ(Fs). Note that fy(A) = (\=3)%p1(\), where p1 () =
A% —(n+3)A%43nX—12. Since ¢;(0) = —12 < 0, 1(0.5) = 1(10n—101) >
0,01(1)=2n—-14>0, v1(3) = -12< 0 and p1(n+1) =n*—-n—-14> 0,
then 0 < pn(Fs) < 0.5, pp—1(Fs) = 1 by Eq. (7). By Lemma 2.4, it follows
that SQ(F5) = p1(F5) — un(Fs) > n —0.5.

Let a3 be the minimum root of ¢3(A) = 0. Since ¥3(2) = =3 (n® +
48n — 128) < 0, 93(1) = 2n — 22 > 0, 93(5) = 62 — 10n < 0 and 3(n) =
8n —28 >0, then 3 < a3 < 1.

It is easy to see that

f3(A) = (A = 60)93(N) +13(N), (12)
fa) = (W = 63+ 1)ips(X) +3(N), (13)
where y3(A\) = —8(n — 5)A2 + 8(3n — 13)\ — 80.

When & < X\ < 1, since 74(X) = —16(n — 5)A + 8(3n — 13) > 8(3n —
13) — 16(n — 5) = 8n — 24 > 0, then y3(A) > 73(2) = §(7n? — 84n +
160) > 0. Recall that £ < a3 < 1, by Egs. (12) and (13) it follows that
fa(as) = fa(as) = y3(as) > 0. This implies that pun(Fa), un(F5) € (0,a3).

Moreover, when 0 < A < ag, since fsg(A) — fz(A) = ¥3(A) < 0, then
tn(Fy) < pn(F5). By Theorem 2.2, we have

SQ(Fs) = p1(Fy) — pn(Fa) > p1(Fs) — pn(F5) = SQ(F5) > n — 0.5.
By combining the above arguments, the result follows. [ |
Note that p,(G) > 0, by Lemmas 3.2-3.3 we can conclude that

Theorem 3.2 If G € T, \ {F1, Fs, F3,Fy, F5} and n > 16, then SQ(F;) =
SQ(Fy) > SQ(F3) > SQ(Fy) > SQ(Fs) > SQ(G).

Remark 2. By Theorems 2.2 and 3.2, the graphs which share the first
four largest signless Laplacian spectral radii even share the first four largest
signless Laplacian spreads in the class of tricyclic graphs on n > 16 vertices.
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