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Abstract Two Schwenk-like formulas about the signless Laplacian ma-
trix of a graph are given, and thus it gives new tools for computing Q-
characteristic polynomials of graphs directly. As an application, we give 
the Q-characteristic polynomial of lollipop graphs and reprove the known 
result that no two non-isomorphic lollipop graphs are Q-cospectral by a 
simple manner. 
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1 Introduction 

Let G be a simple graph with vertex set V (G) = { v1 , ... , Vn}, edge set 
E(G) = {et, ... , em} and adjacency matrix A( G)= (aij)nxn where aij = 1 
if Vi is adjacent to Vj, and aij = 0 otherwise. Let D( G) be the diago-
nal matrix diag(dt, ... , dn), where di denotes the degree of vertex Vi (i = 
1, ... , n). The signless Laplacian matrix Q(G) is the matrix D(G) +A( G). 
The polynomials P(G;x) = det(xl- A(G)) = E7=oaixn-i, cp(G;x) = 
det(xl- Q(G)) = E7=oqixn-i where I is the identity matrix, are defined 
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as characteristic polynomial and Q-characteristic polynomial of the graph 
G, respectively. For brevity, write P(G;x) = P(G), cp(G;x) = cp(G) pro-
vided the omitted variable is obvious from the context. Since A( G) and 
Q( G) are real symmetric, their eigenvalues are all real numbers. The A-
spectrum (Q-spectrum) of a graph G consists of the eigenvalues of A( G) 
(Q(G)). Two graphs G and Hare said to be A-cospectral (Q-cospectral) if 
they share the same A-spectrum (Q-spectrum). 

It is meaningful to study the property of characteristic polynomial for 
spectral graph theory. Since calculating the spectrum of a graph is a fun-
damental work and determining the coefficients of the characteristic poly-
nomial and then finding its roots is one way for computing the eigenvalues 
of a graph. In addition, as cospectral graphs have the same characteristic 
polynomials, several graph operations and modifications in which the cor-
responding characteristic polynomials are known, can be used to construct 
cospectral graphs. For instance, by examining the characteristic polynomi-
al of what he called the coalescence of two graphs, Schwenk [10] proved the 
famous theorem which stated that with respect to adjacency matrix, almost 
all trees are not determined by their spectra. On the other hand, compar-
ing the exponents and coefficients of two characteristic polynomials is a 
frequently-used and efficient method for determining the non-cospectrality 
of two graphs, see [4, 8, 9, 12-14] etc. 

There are several formulas for determining characteristic polynomials 
of graphs derived from that of their subgraphs by certain operations or 
modifications. The first is due to Heilbronner [7], he gave a formula which 
expresses the characteristic polynomial of graph GuvH (the graph obtained 
from G and H by adding a bridge uv, where u E V(G) and v E V(H)) 
by the characteristic polynomials of graphs G, H, G- u and H- v. The 
most frequently encountered formulas in the literature are those given by 
Schwenk [11]. His two results display respectively the relations between 
the characteristic polynomial of a graph G and the polynomials of G minus 
a vertex and G minus an edge. In the monograph [2] Cvetkovic et al. 
presented a equation of the characteristic polynomial of the corona Go H in 
terms of that of the graph G and the regular graph H. Recently, Belardo et 
al. [1] extended some well-known formulas about characteristic polynomial 
to weighted ( di)graphs. All the above formulas are involved in adjacency 
matrix, however, when it comes to signless Laplacian matrix, little are 
known. 

In this paper, by the definition of the semiedge vertex, Q-induced sub-
graph and Q-elernentary graph, two Schwenk-like formulas for signless 
Laplacian matrix are established. Thus it supplies new tools for evalu-
ating Q-characteristic polynomials of graphs. As one application, the Q-
characteristic polynomial of lollipop graphs is presented and the known 
result that no two non-isomorphic lollipop graphs are Q-cospectral are re-
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proved by a simple manner. 

2 Main results 
Let G be a graph without isolated vertex. Its signless Laplacian matrix 
Q( G) has nonzero diagonal entries. Then the principal submatrix of Q( G) 
will not be a signless Laplacian matrix of the induced subgraph of G since 
the two matrices do not have the identical diagonal entries. In order to 
avoid this difficult, we introduce the definition of semiedge vertex. For 
signless Laplacian matrix Q(G), we view each vertex v and the semiedges 
incident to it indivisible. We define it as semiedge vertex and denote by v-. 
For example, the thick lines shown in Fig. 1 are semiedges while the thin 
lines are edges. The edge of G is independent of semiedge vertex. By the 
symbol e = u-v-, we mean that there is an edge e joining one semiedge 
of u- and one semiedge of v-. The degree of a semiedge vertex v- is the 
number of semiedges incident to v-. If we delete a semiedge vertex from 
a graph G, then the edges incident to it should be also removed, however, 
all of semiedge vertices remain the same when an edge is deleted (see for 
example, 8(2, 0, 2) -v3 and 8(2, 0, 2) -e7 in Fig. 1). A Q-induced subgraph 
Gq[V(Z)] is a subgraph induced by the semiedge vertex set V(Z) and the 
edges whose two end semiedge vertices belong to V(Z). In a Q-elementary 
graph, each component is either a semiedge vertex, or a P2, or a cycle. We 
give all the Q-elementary spanning subgraph of 8(2, 0, 2) in Example 1. 

Example 1. 8(2, 0, 2) has 27 Q-elementary spanning subgraphs, we list 
them according to the number of edges. H1 = {v!,v2,v3,v4,v,5,v6}; 
H2 = {v1v2,v3,v4,v,5,v6}, H3 = {v4v,5,v!,v2,v3,v6}, H4 = {v3v6, 
v;-,v2,v4,v5}, Hs = {v1v6,v2,v3,v4,v5}, H6 = {v2v3,v1,v4,v,5,v6}, 
H1 = {v3v4,v1,v2,v5,v6}, Hs = {v,5v6,v1,v2,v3,v4}; Hg = {v1v2, 
v3v6,v4,v5}, Hw = {v1v6,v2v3,v4,v5}, Hu = {v1v6,v3v4,v2,v5}, 
H12 = {v2v3,v5v6,v1,v4}, H13 = {v3v6,v4v,5,v;-,v2}, H14 = {v3v4, 
v,5v6,v1,v2}, H1s = {v1v2,v3v4,v,5,v6}, H16 = {v1v2,v5v6,v3,v4}, 
H11 = {v1v6, v4v5, v2, v3}, H1s = {v2v3, v4v5, v;-, vt3}, H19 = {v1v2, 
v4v5,v3,v6}; H2o= {v1v2,v3v6,v4v5}, H21 = {v1v6,v2v3,v4v5}, 
H22 = {v1v2,v3v4,v5v6}; H23 = {v1v2v3v6v1,v4,v5}, H24 = {v3v4 
v,5v6v3, v1, v2}; H25 = {v!v2v3v6v1, v4v5}, H26 = {v3v4v5v(lv3, 
v!v2}; H21 = {v1v2v3v4v,5v(lvl}. 

Harary [5] first gave a structural interpretation of determinant of the ad-
jacency matrix A( G) by the linear subgraphs whose components are paths 
P2 or cycles. The following theorem is a similar result concerning signless 
Laplacian matrix Q( G). 
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8(2,0,2) 8(2, 0, 2) - v3 8(2, 0, 2) - e7 

Fig. 1: Illustration of semiedge vertex 

Theorem 2.1. Let G be a graph with n vertices and no isolated vertices. 
Suppose that Q( G) is the signless Laplacian matrix of G, then 

i(H) 
det(Q(G)) = ( -l)n L ( -1)w(Hl( IJ d(v/:))2c(H), 

k=1 

where Yt' is the set of Q-elementary spanning subgraphs of G, v;-, ... , v;(H) 
denote the semiedge vertex components of H, w(H) denotes the number of 
components of H and c(H) denotes the number of cycles in H. 

Proof. Let Q = [q;J]nxn be the signless Laplacian matrix of the graph G. 
Consider a term sgn( 1r )q1,1r( 1)q2 ,7f(2) · · · qn,1r(n) in the expansion of det( Q). If 
this term is non-zero then j = n(j) or j "'n(j). Thus 1r can be expressed as 
a composition of disjoint cyclic permutations: 0:1 · · · O:;(H)f31 · · · f3t(H(Y1 · · · 
rc(H) where 0:1, ... , o:i(H) are the fixed points; f31, ... , f3t(H) are transposi-
tions and 11, ... , rc(H) are cycles of length at least three. This expression 
determines an Q-elementary spanning subgraph H in which the semiedge 
vertices components v-;; (k = 1, ... , i(H)) are determined by the fixed 
points 0:1, ... , o:i(H), the components isomorphic to P2 are determined by 
the transpositions {31 , ... , f3t(H) and the cycles are determined by the re-
maining 11 ... rc(H). Let R( rk) (k = 1 ... , c(H)) be the length of /k, since 
a fixed point and a transposition has length 1, 2, respectively. The sign of 
n is 

i(H) t(H) c(H) 
sgn(n) = L (R(o:k)- 1) + L (R(f3k)- 1) + L (R(rk)- 1) 

k=1 k=1 
c(H) 

= t(H) + L R(rk)- c(H). 
k=1 
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In view of i(H) +t(H) +c(H) = w(H) and i(H) +2t(H) + f('Yk) = n, 
we have sgn(rr) = n- w(H). Thus the term sgn(rr)q1,11"(1)Q2,11"(2) · · · Qn,rr(n) 

contributes ( -1)n-w(H) to det(Q(G)). Finally, H arises from 
2c(H) permutations: a 1 · · · ai(H)f31 · · · f3t(H)If 1 · • · with the same sign 
and identical contribution to det(Q) as 7!". D 

We compute the determinant of Q(B(2, 0, 2)) according to Theorem 2.1 
and the data of Q-elementary spanning subgraphs obtained from Example 
1 in the following. 

Example 2. 

det(Q(B(2, 0, 2))) 
27 i(H;) 

= ( -1)6 L) -1)w(H;)( II d(v;;))2c(H;)' 

i=1 k=1 
i(H1) 3 i(H;) 

= (-1)w(Hl)( II d(v;;))2c(Hl) + II d(v;;))2c(H;) 

k=1 i=2 k=1 
i(H4) 8 i(H;) 

+ ( -1)w(H4)( II d(v;;))2c(H4) + -1)w(H;l( II d(v;;))2c(H;) 

k=1 i=5 k=1 
14 i(H;) 18 i(H;) 

+ -1)w(Hi)( II d(v;;))2c(H;) + I:C -1)w(H;)( II d(v;;))2c(H;) 

i=9 k=1 i=15 k=1 
i(H19) 22 i(H;) 

+ ( -1)w(H19)( II d(v;;))2c(H19) + L) -1)w(H;)( II d(vk"))2c(H;) 

k=1 i=20 k=1 
24 i(H;) 26 i(H;) 

+ L) -1)w(H;l( II d(v;;))2c(H;) + L ( -1)w(Hi)( II d(v;;))2c(H;) 

i=23 k=1 i=25 k=1 
i(H27) 

+ ( -1)w(H27)( II d(v;;))2c(H27) 
k=1 

= ( -1)6 X 24 X 32 + 2 X ( -1)5 X 22 X 32 + ( -1)5 X 24 + 4 X ( -1)5 X 23 X 3 

+ 6 X ( -1)4 X 22 + 4 X ( -1)4 X 2 X 3 + ( -1)4 X 32 + 3 X ( -1)3 

+2 X (-1)3 X 22 X 2+2 X (-1)2 X 2+(-1) X 2 

= 144 - 184 +57 - 3 - 16 + 4- 2 

=0. 

It is not hard to calculate the determinant of Q(B(2, 0, 2)) directly, we see 
that the two results are coincident. 
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The next corollary interprets the coefficients of Q-characteristic poly-
nomial of a graph by its Q-elementary subgraphs. 

Corollary 2.2. Let cp(G; x) = xn + q1xn-l + · · · + qn-IX + qn be the 
Q-characteristic polynomial of G, and let £. be the set of Q-elementary 
subgmphs of G with s semiedge vertices. Then 

i(H) 

q8 = L ( -1)w(H)( IJ d(v;))2c(H) (s = 1, ... , n). 
k=l 

Proof. Since ( -1)"q8 is the sum of all s x s principal minors of Q(G), and 
each such minor is the determinant of the signless Laplacian matrix of a Q-
induced subgraph on s semiedge vertices. A Q-elementary subgraph with 
s semiedge vertices is contained in exactly one such Q-induced subgraph, 
and so the result follows by applying Theorem 2.1 to each s x s principal 
minors of Q( G). D 

For the signless Laplacian matrix Q(G), we use cp(G \ V(Z); x) to de-
note the Q-characteristic polynomial of the Q-induced subgraph GQ [V( G)\ 
V(Z)] (or equivalently, the characteristic polynomial of the principal sub-
matrix of Q( G) whose rows and columns correspond to the semiedge ver-
tices in V(G) \ V(Z)). In particular, if V(Z) = {u-} or V(Z) = { u-, v-}, 
we write G- u- and G -u-- v- to abbreviate GQ[V(G) \ V(Z)]. Now we 
give the Schwenk-like formulas for Q-characteristic polynomial of a graph 
G in the following theorem. 

Theorem 2.3. (a) For any semiedge vertex u- of a graph G, 

(1) 
- 2 L cp(G \ V(Z); x), 

ZEC(u-) 

where the first summation goes over all semiedge vertices v- adjacent 
to u- and C(u-) denotes the set of all cycles containing u-. 

(b) For any edge u-v- of the graph G, 

cp(G; x) = cp(G- u-v-; x)- cp(G- u-- v-; x) 

-2 L cp(G\ V(Z);x), 
ZEC(u-v-) 

where C(u_v_) denotes the set of all cycles containing u-v-. 
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Proof. (a) Recall that r.p(G; x) = q;xn-i, and Corollary 2.2 expresses 
q; in terms of the i-point Q-elementary subgraphs. We now present a one-
to-one correspondence between those Q-elementary subgraphs contributing 
to c; on the left and those contributing to one of the terms on the right. 
Namely, letting H be ani-point Q-elementary subgraph of G, we have four 
possibilities: 

(i) If ·u- (j_ H, let H' be the same Q-elementary subgraph, only now 
viewed as a Q-induced subgraph of G- u-. 

(ii) If u- is one of the semiedge vertex component of H, let H' be H -u-
viewed as a Q-induced subgraph of G- u-. 

(iii) If u- E P2 C H, let H' be H-V(P2) viewed as a Q-induced subgraph 
of G- V(P2). 

(iv) Ifu- E Ck C H, let H' be H -V(Ck) viewed as aQ-induced subgraph 
of G- V(Ck)· 

It is easy to see that this does indeed establish a one-to-one correspon-
dence. Moreover, if H contributes an amount s toward the coefficient xn-i 
on the left, we observe that on the right H' also contributes s in each case 
as we demonstrate: 

(i) Since H' H, we see that H' contributes s to the coefficient of 
xn- 1-i in r.p( G- u-; x), and thus supplies s toward the coefficient of 
xn-i inxr.p(G-u-;x). 

(ii) Now H' H- u-, so H' contributes 

s 

to xn- 1-(i- 1) = xn-i to the Q-induced subgraph G - u-. Thus it 
contributes sxn-i to -d(u-)r.p(G- u-;x). 

(iii) In this case H' H- V(P2 ), soH' contributes 

i(H') i(H) 
( -l)w(H')( II d(vl:))2c(H') = -( -l)w(H)( II d(v;;))2c(H) = -s 

k=1 k=l 

to xn- 2-(i- 2) = xn-i to r.p( G- u- - v-; x). Hence, it supplies sxn-i 
to -r.p(G-u- -v-;x). 
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(iv) Finally, we have H' H- V(Ck), soH' contributes 

i(H') i(H) 

( -l)w(H')( II d(vJ:))2c(H') = -1)w(H)( II d(vJ:))2c(H) = 
k=l k=l 

to xn-k-(i-k) = xn-i in cp(G\ V(Ck); x). Thus H' contributes sxn-i 
in -2cp(G \ V(Ck);x). 

Therefore, the contribution of each Q-elementary subgraph H to the left 
side is matched by a corresponding contribution on the right side of the 
Q-elementary subgraph H'. 

For (b), we have three cases, the method of proof is identical to that of 
(a) and is omitted. This completes the proof of the theorem. D 

As an illustration of Theorem 2.3, we give the following example. 

Example 3. Let G 8(2, 0, 2) (see Fig. 1}, C1 = v1v2v3v5v1, C2 = 
v3v4v5v5v3, C3 = v1v2v3v4v5v6v1. Applying Theorem 2.3 at semiver-
tex v3 and edge v3 v6, respectively, we have 

cp(G) = x 6 - 14x5 + 74x4 - 184x3 + 213x2 - 90x, 

cp(G- v3) = x 5 - llx4 + 44x3 - 78x2 + 59x- 15, 

cp(G- v2- v3) = cp(G- v3- v4) = x4 - 9x3 + 27x2 - 31x + 11, 

cp(G- v3- v6) = x 4 - 8x3 + 22x2 - 24x + 9, 

cp(G- v3v5) = x 6 - 14x5 + 75x4 - 192x3 + 239x2 - 130x + 21, 

cp(G \ V(Cl)) = cp(G \ V(C2)) = x 2 - 4x + 3, 

cp(G \ V(C3 )) = 1. 

It follows that 

cp(G) =(x- 3)cp(G- v3)- (cp(G- v2- v3) + cp(G- v3- v4) 

+ cp(G- v3- v6)- 2(cp(G- V(C1)) + cp(G \ V(C2)) 

+ cp(G- V(C3)), 

cp(G) = cp(G- v3v6)- cp(G- v3- v6)- 2(cp(G- V(Cl)) + cp(G \ V(C2)). 
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3 Application 

The lollipop graph La,b (a 3, b 1) is obtained by appending a cycle 
Ca to a pendant vertex of a path Pb. By showing no two non-isomorphic 
line graphs of lollipop graphs have the same adjacency spectrum [6, 15], 
the authors conclude that no two non-isomorphic lollipop graphs are Q-
cospectral. In what follows, we will give a direct proof for the above result. 
Some symbols follow from the paper [3]. 

Let Bn he the Q-induced subgraph obtained from Pn+1 by deleting one 
semiedge vertex of degree one and Hn be the Q-induced subgraph obtained 
from Pn+Z by deleting two semiedge vertices of degree one. Then the Q-
characteristic polynomials of Bn, Pn and Hn have following relations. 

Lemma 3.1. Set <p(Po) = 0, <p(Bo) = 1, <p(Ho) = 1. We have 

{i} <p(Bn) = + <p(Pn)); 

(ii} <p(Pn+l) = (x- 2)<p(Pn)- <p(Pn_I), (n 1); 

(iii} <p(Hn) = 1). 

Proof. Since 

x-1-1 -1 0 0 
-1 x-2 -1 0 

<p(Bn) = 0 -1 x-2 0 = <p(Pn)- <p(Bn-1)· 

0 0 0 x-1 

Thus we have 

(3) 

From Theorem 2.3 (a), we have 

(4) 

Substituting Eq. (3) into Eq. (4), we have 

(5) 

therefore (i) follows. 
For (ii), using (4), (3) and (5), we obtain 

<p(Pn+I) = (x- 1)<p(Bn)- <p(Bn-1) 
= (x- 1)(<p(Pn)- <p(Bn-] )) - <p(Bn-1) 
= (x 1)<p(Pn)- x<p(Bn_!) 

(6) 

= (x- 1)<p(Pn)- (<p(Pn) + <p(Pn-1)), 
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hence <p(Pn+I) = (x- 2)<p(Pn) - <p(Pn-d· 
To show (iii), we need to verify <p(Pn) = x<p(Hn-d· Using induction 

on n, if n = 1, 2, the result is obvious. Suppose that n 2: 3. From (ii) and 
induction, we get 

<p(Pn) = (x- 2)<p(Pn-1)- <p(Pn-2) 
= x(x- 2)<p(Hn-2) - x<p(Hn-3) 
= x((x- 2)<p(Hn-2)- <p(Hn-3)) 
= x<p(Hn-1)· 

0 

The following lemma gives the concrete form of Q-characteristic poly-
nomials of graph Pn, Bn and Hn. 

Lemma 3.2. Let y be the root of the equation y 2- (x-2)y+ 1 = 0 (xi- 4), 
then the Q-characteristic polynomial of the path Pn, Bn, Hn are 

Proof. Lemma 3.1 (ii) gives the recurrence relation of <p(Pn)· It has char-
acteristic equation 

y 2 - (x- 2)y + 1 = 0 (xi- 4). 

Let y be the root of (7), the general solution of <p(Pn) is 

<p(Pn) = C!Yn + c2( )n. 
y 

Note that <p(Po) = 0 and <p(P1) = x, we obtain that, 

X y2 + 2y + 1 y + 1 
y2 -1 y- 1 
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Substituting (9) into (8) we have 

(P. ) _ Y + 1 Yn _ Y + 1 -n _ y2n(y + 1) _ y + 1 
<p n - y- 1 y- 1 Y - yn(y- 1) yn(y- 1) 

(y + 1)(y2n - 1) 
(10) 

yn+l _ yn 

Finally, By putting x = Y2 +2Y+l and (10) into Lemma 3.1 (i), (iii), we see y 
that Lemma 3.2 holds. D 

Next by providing the Q-characteristic polynomial of the lollipop graph, 
we give a direct proof of the known result that no two non-isomorphic 
lollipop graphs have the same Q-spectrum. 

Lemma 3.3. The Q-characteristic polynomial of the lollipop graph La,b is 
<p(La,b;y) = (y_!l)2'Pl(La,b;y), where 

'Pl(La,b; y) =ya+b+2 _ 2ya+b+l _ 2yb+2 + 2yb+l _ yb+2-a 

+ Ya-b + 2yl-b + 2y-b + y-a-b _ 2y-a-b-l 

and y is the root of Eq. (7). 

(11) 

Proof. Let u- be the unique semiedge vertex with three semiedges. By 
Theorem 2.3 (a), <p(La,b) can be computed as follows: 

<p(La,b) = (x- 3)<p(Ha_l)<p(Bb) - 2<p(Ha_t)<p(Bb) 

- <p(Ha-l)<p(Bb-l) - 2<p(Bb)· 
(12) 

Recall that x = by Lemma 3.2 (ii), (iii), Maple direct calculation, 
we see that (11) holds. D 

Theorem 3.4. {6, 15} No two non-isomorphic lollipop graphs are Q-cospectral. 

Proof. Let La,b and La' ,b' be two Q-cospectrallollipop graphs, then they 
share the same Q-characteristic polynomial, thus from Lemma 3.3 <p 1 (La,b; y) 
= <f!l (La' ,b'; y). By (11), we see that the third leading term (term with the 
third highest exponent) of <f!l(La,b) is -2yb+2 or ya-b. Comparing this 
corresponding term in <p1 (La' ,b'; y) leads to a = a' and b = b'. Hence La,b 
and La' ,b' are isomorphic. D 
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