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ABSTRACT. Let k 0 be an integer. Oblong (pronic) numbers are num-
bers of the form Ok = k( k+ 1). In this work, we set a new integer sequence 

B = Bn(k) defined as Bo = 0, B1 = 1 and Bn = Ok Bn-1- Bn-2 for 
n 2 and then derived some algebraic relations on it. Later, we give 
some new results on balancing numbers via oblong numbers. 
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1. INTRODUCTION 

Fibonacci, Lucas, Pel! and the other special numbers and their generaliza-
tions arise in the examination of various areas of science and art. In fact, these 
numbers are special cases of a sequence which is defined as a linear combination 
as follows: 

(1.1) 

where c1, c2, · · · , ck are real constants. The applications and identities related 
with these numbers can be seen in [3, 5, 6, 7, 9, 13]. 

Fibonacci numbers form a sequence defined by the following recurrence re-
lation: Fa = 0, F1 = 1 and Fn = Fn-1 + Fn-2 for all n 2: 2. The characteristic 
equation of Fn is x2 - x - 1 = 0 and hence the roots of it are a = 1+{'5 and 

f3 = 1-/'fi. Johannes Kepler pointed out that the ratio of consecutive Fibonacci 
numbers converges to the golden ratio as the limit, that is, 

l. Fn 
1m -F =a. 

n-+oo n-1 
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Like every sequence defined by a second order linear recurrence, the Fibonacci 
numbers Fn have a closed-form solution. It is known as Binet formula 

an- (3n 
Fn = --'-::-

a-(3 

for n 2': 0. Lucas numbers Ln are defined by La = 2, £1 = 1 and Ln = Ln-1 
+Ln-2 for n 2': 2. Its Binet formula is Ln = an+f3n. There are a lot of algebraic 
identities between Fibonacci and Lucas numbers [7, 9]. The Pell numbers are 
defined by the recurrence relation Po = 0, P1 = 1 and Pn = 2Pn-1 + Pn-2 
for n 2': 2. Some identities for Pell numbers can be found in [11, 20]. Also the 
Pell-Lucas, Jacobsthal and Pell-Jacobsthal integer sequences are also famous 
integer sequences. 

In fact all of them are the special cases of the following two integer se-
quences: Let P and Q be non-zero integers and let D = P 2 - 4Q be called the 
discriminant and assume that D =/= 0 (to exclude a degenerate case). For each 
n 2': 0, define Un = Un(P, Q) and Vn = Vn(P, Q) to be 

(1.2) Un = Un(P, Q) = PUn-1 - QUn-2 

Vn = Vn(P, Q) = PVn-1 - QVn-2 

for n 2': 2 with initial values U0 = 0, U1 = 1 and Vo = 2, V1 = P. The 
characteristic equation of them is x 2 - Px + Q = 0 and hence the roots of it 
are 

and 
P- )P2 -4Q 

(3 = 2 . 

So Binet formulas are hence 
an_ (3n 

Un = and Vn =an+ (3n. 
a-(3 

Note that in (1.2), one has the following table: 

p Q Un Vn 
1 -1 Fibonacci sequence Lucas sequence 

2 -1 Pell sequence Pell-Lucas sequence 

1 -2 Jacobsthal sequence Pell-Jacobsthal sequence 

There are a lot of algebraic identities on Un and Vn (see [19]). Also for the 

. . M [ p -Q] h compamon matnx = 1 0 , one as 

[ Vn ] = Mn-1 [ p ] . 
Vn-1 2 
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Further the generating function for U n and Vn is 

X = Unxn and 2 - Px 2 = Vnxn, 
1 - Px + Qx2 L..t 1 - Px + Qx L..t 

n=O n=O 

respectively (for further details see also [3, 7, 9, 12, 13, 19)). 

2. INTEGER SEQUENCE VIA OBLONG NUMBERS. 

Let k 2: 0 be an integer. Then it is known that oblong numbers are numbers 
of the form 

(2.1) ok = k(k + 1). 

The first few oblong numbers are 0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, · · ·. So the 
k-th oblong number represents the number of points in a rectangular array 
having k columns and k + 1 rows. Further the product of two oblong numbers 
Ok-1 and Ok is another oblong number Ok2_ 1 (see [2]), that is, 

Also the half of Ok is a triangular number, that is, Tk = c;k . The connections 
between oblong and triangular numbers were studied in [8]. 

In this section, we try to define a new integer sequence associated with Ok 
and then derive some algebraic identities on it. For this reason, we set P = Ok 
and Q = 1. Then we define the sequence E = En(k) as Eo= 0, E 1 = 1 and 

(2.2) 

for n 2: 2. The characteristic equation of (2.2) is x2 - Okx + 1 = 0 and hence 
the roots of it are 

(2.3) a = ok + JC5[="4 and (3 = ok - jOf=4" 
2 2 . 

So for n 2: 0, Binet formula is 

(2.4) 
an_ (3n 

En=--'-::--
a-(3 

for k f. 1. Now we can give the following results. 

Theorem 2.1. Let En denote the nth number. 

(1) If k = 1, then 
n 
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(2) If k > 1, then 

B; = (Ok- 1)Bn- Bn-1- 1. 
Ok-2 

i=1 

Proof. (1) Let k = 1. Then 01 = 2 and Bn = 2Bn-1- Bn-2· So Bn =nand 
hence the sum of first n terms of Bn is n(n2+1) = Tn· 

(2) Let k > 1. Since Bn = OkBn-1 - Bn-2, we get Bn + Bn-2 = OkBn-1 
and so 

(2.5) 

B2 + Bo = OkB1 

B3+B1 =0kB2 

B4 + B2 = OkB3 

Bn-1 + Bn-3 = OkBn-2 

Bn + Bn-2 = OkBn-1· 

If we sum of both sides of (2.5), then we obtain 

Bo + B1 + · · · + Bn-2 + B2 + B3 + · · · + Bn = Ok(B1 + B2 + · · · + Bn_r). 

Adding Bn-1 + Bn + Bo + B1 + Ok(Bo + Bn) to both sides of above equation, 
we get the desired result. D 

Now we can give the following theorem concerning the recurrence relation 
on Bn numbers. 

Theorem 2.2. Let Bn denote the nth number, Then for n 2, we have 

(1) B2n = 01B2n-2- B2n-4 and B2n+1 = 01B2n-1- B2n-3 fork= 1; 
(2) B2n = ( - 2)B2n-2 - B2n-4 and B2n+1 = ( - 2) B2n-1 - B2n-3 

fork> 1. 

Proof. (1) Let k = 1. Then Bn = 2Bn-1- Bn-2· So B2n = 01B2n-2- B2n-4 

and B2n+1 = 01B2n-1 - B2n-3· 

(2) Let k > 1. Since B2n = OkB2n-1 - B2n-2, we get 

B2n = Ok(OkB2n-2- B2n-3)- B2n-2 

= 1)B2n-2- OkB2n-3 

= 1)B2n-2- Ok(OkB2n-4- B2n-5) 
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= 1)B2n-2- + OkB2n-s 

= 2)B2n-2 + B2n-2- + OkB2n-s 

= 2)B2n-2 + OkB2n-3- B2n-4- + OkB2n-s 

= 2)B2n-2 + OkB2n-s- (1 + + OkB2n-s 

= 2)B2n-2- B2n-4· 

The other assertion can be proved similarly. 

Now we can give the following theorem related to powers of a and (3. 

Theorem 2.3. Let Bn denote the n-th number. 

(1) If k = 1, then an+ (3n = 01. 
(2) If k > 1, then 

Proof. (1) Let k = 1. Then a= (3 = %- = 1. So an+ (3n = 2 = 0 1 . 

0 

(2) Note that Bn+l + Bn-1 = OkBn. So Bn+1 - Bn-1 = OkBn - 01Bn-1 
and hence 

( an-(3n) (an-1_(3n-1) 
Bn+1-Bn-1=0k a-(3 -01 a-(3 

_ an [.!Z.!:._ _ 01 ] + (3n [ -Ok _ 01 ] 
- a- (3 a( a- (3) a- (3 (3(a- (3) 
=an+ (3n. 

We see as above that Bn+l - Bn-1 = an + (3n. So 

an + (3n = Bn+1 - Bn-1 

= 2Bn+1 - (OkBn- Bn-1)- Bn-1 

= 2Bn+1- OkBn. 

For the last assertion, we easily get 

( an-(3n) (an-1_(3n-1) 
OkBn- 01Bn-1 = Ok a_ (3 -01 a_ (3 

n [ Ok 01 ] (3n [ -Ok 01 ] 
=a a- (3 - a( a- (3) + a- (3 + (3(a- (3) 

=an+ (3n. 
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Now we consider the circulant matrix for Bn numbers. Recall that a circu-
lant matrix (see [4]) is a matrix A defined as 

a1 a2 a3 an-1 an 
an a1 a2 

an-1 an a1 

an-2 an-1 
an-3 an-2 

A= 

where a; are constant. The eigenvalues of A are 
n-1 

(2.6) Aj(A) = L akw-jk, 
k=O 

where w = e 2;::', z = A and j = 0, 1, · · · , n - 1. Therefore the circulant 
matrix for Bn numbers is hence 

Bo B1 B2 

Bn-1 Bo B1 

Bn-2 Bn-1 Bo 
(2.7) B = B(Bn) = 

B1 B2 B3 

Then we can give the following theorems. 

Theorem 2.4. Let Bn denote the n-th number. 

(1) If k = 1, then B has no eigenvalues. 
(2) If k > 1, then the eigenvalues of B are 

.A (B) = (Bn-1 + 1)w-j - Bn 
1 w- 2J - Okw-J + 1 

for j = 0, 1, 2, · · · , n- 1. 

Bo 

Proof. (1) Let k = 1. Then a= (3 = 1. So Binet's formula is invalid. Therefore 
B has no eigenvalues. 

(2) If k -f. 1, then applying (2.6), we get 
n-1 

Aj(B) = L Bkw-jk 
k=O 
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1 (an- (3n) 
w- 21 - Okw-i + 1 a- (3 
(En-t + 1)w-j -En 
w-21 - Okw-i + 1 · 

0 

The spectral norm for a matrix A= [a;j]nxm is defined to be 

(2.8) IIAIIspec =max{ 0\}, 

where A; are the eigenvalues of AHA for 0 :::; j :::; n- 1 and AH denotes the 
conjugate transpose of A. Hence we can give the following theorem which can 
be proved by induction on n. 

Theorem 2.5. Let En denote the n-th number. 

(1) If k = 1, then the spectral norm of E is 

I lEI I _ n(n- 1) 
spec- 2 · 

(2) If k > 1, then the spectral norm of E is 

I lEI I = (Ok- 1)En-t- En-2- 1 
spec ok- 2 . 

Example 2.1. 1) Let k = 1 and n = 5. Then the eigenvalues of E/! Es are 

25 + 5v'5 25 - 5v'5 
Ao = 100, At= 2 , A2 = 2 , A3 =At, A4 = A2. 

The spectral norm is IIEIIspec = VXQ = 10. Also 5:/ = 10. So IIEIIspec = 10. 
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2) Let k = 7 and n = 6. Then 0 7 = 56, E4 = 175504 and E 5 = 9825089. 
The eigenvalues of Ef! E6 are 

.-\0 = 100075714326225, .-\1 = 93173941602225, 

.-\2 = .-\4 = 98256156072372, .-\3 = .-\5 = 94808571993300. 

The spectral norm is IIEIIspec = 10003785. Also (Or- 1gr:_; 8 •-1 = 10003785. 
So 

IIEIIspec = (07 - 1)Es- E4 - 1 = 10003785 
07-2 

as we claimed. 

Now we set the following matrices: 

M = M(En) = [ ] = [ ] (companion matrix) 

W = W(En) = [ E2 E1 ] = [ Ok 1 ] 
E1 Eo 1 0 

A= A(En) = [ E1 Eo ] = [ 1 0 ] . 

Then we can give the following theorem. 

Theorem 2.6. Let Ok denote the k-th oblong number and En denote the 
n-th En number. Then 

(1) 

for n 2: 1. 
(2) En+l = AMn At for n 2: 1. 
(3) En = AMn-2 W At for n 2: 2. 
(4) 

for n 2: 1. 

(5) If n 2: 3 is odd, then 
n-1 
-2- . 

2: C(n-
i=O 

n-1 

C( 1 . ·)on-l-2i L.. n- - z,z k 
i=O 

and if n 2: 2 is even, then 

18 

n-1 
""'2 . 
"'C( 1 . ·)on-1-2• L.. n- - z, z k 
i=O 

n-3 

't C(n- 2- i, 
i=O 



J-- C( . ·)on-2i L..t n- k 
i=O 

n-2 

C( 1 . ·)on-1-2i L..t n- - z, z k 
i=O 

'£ C(n- 1- i, I 
i=O 

' n-2 t C(n- 2- i, 
i=O 

here C(n, i) denotes the binomial coefficient. 

Proof. (1) We prove it by induction on n. Let n = 1. Then 

So it is true for n = 1. Let us assume that this relation is satisfied for n - 1, 
that is, 

Mn-1 = [ Bn -Bn-1 ] . 
Bn-1 -Bn-2 

We will show that this relation is satisfied for n. Since Mn = Mn-1 · M, we 
get 

-Bn ] . 
-Bn-1 

(2) 

(3) 

0 ] [ Bn-1 
Bn-2 

-Bn-2 ] [ Ok 1 ] [ 1 ] 
-Bn-3 1 0 0 

0 ] [ Bn-1 
Bn-2 

-Bn-2 ] [ Ok ] 
-Bn-3 1 
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(4) 

= [ 1 O ] [ OkBn-1 - Bn-2 ] 
OkBn-2 - Bn-3 

= OkBn-1 - Bn-2 

=En. 

-Bn-1 ] [ Ok 1 ] 
-Bn-2 1 0 

[ OkBn- Bn-1 
OkBn-1 - Bn-2 

[ ] . 

(5) Let n be odd and let n = 3. Then 

1 L C(3- i, i)0%- 2i = + 20k 
i=O 

1 L C(2- i, = + 1 
i=O 

0 

L C(1 - i, i)0!-2i = Ok. 
i=O 

Hence 

w3 = [ + 20k + 1 ] 
+ 1 ok · 

Also by simple calculation, we see that 

w3 = [ + 20k + 1 ] . 
+ 1 ok 

So it is true for n = 3. Let us assume that this relation is satisfied for n - 2, 
that is, 

n-3 n-3 

2 . ·)on-2-2i L.. n- -I, I k -{-- C( 3 . ·)on-3-2i L.. n- -I, I k 
i=O i=O 

wn-2 = 
n-3 n-5 
-2- . 

"' C( 3 . ·)on-3-2, L.. n- -I, I k -{-- C( 4 . ·)on-4-2i L.. n- -I, I k 
i=O i=O 

20 



Since wn = wn-2W 2 , we set 

wn = [ W{l 
W21 

Hence we easily deduce that 

W{2]. 
W22 

Wi1 = + 1) (t C(n- 2- i, + Ok C(n- 3- i, 
•=0 •=0 

= (02 + 1) ( + C(n- 3, + C(n- 4, + ... 
k +C(n;-1, +C(n;-1, n23)0k ) 

O ( + C(n- 4, + C(n- 5, + ... ) 
+ k +C( n-1 n-5 )02 + C( n-3 n-3 )00 

2'2 k 2'2 k 

= Oi: + [C(n- 3, 1) + 2] + [C(n- 4, 2) + C(n- 3, 1) + C(n- 4, 1)] 

[ n-1 n-3 n+1 n-5 n-1 n-5] 3 + ... + C(-2-, -2-) + C(-2-, -2-) + C(-2-, -2-) 0 k 

[C( n - 1 n - 3 ) C( n - 3 n - 3 )] 0 
+ 2'2+ 2'2 k 

On C( )on-2 C( )on-4 (n + 1 n- 1)0 = k + n-1,1 k + n-2,2 k + .. ·+C - 2-,-2- k 

n-1 -.-
- " C( . ·)on-2i - L.... n-1.,1. k . 

i=O 

Similarly it can be shown that 

Wi2 = Ok C(n- 2- i, + ( t C(n- 3- i, 
z=O z=O 

n-1 -.-
- " C( 1 . ·)on-1-2i - L.... n- - t,t k 

i=O 

W2'1 = + 1) (t C(n- 3- i, + Ok (t C(n- 4- i, 
z=O t=O 

n-1 -.-
- " C( 1 . ·)on-1-2i - n- -t.,t k 

i=O 

W2'2 = Ok C(n- 3- i, + C(n- 4- i, 
=0 =0 

n-3 -.-
- " C( 2 . ·)on-2-2i - L.... n - - t, t k . 

i=O 

So it is true for n. The other case can be proved similarly. 

21 
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2.1. Simple Continued Fraction Expansion of Bn Numbers. In this sec-
tion, we want to consider the continued fraction expansion of the ratio of two 
Bn numbers. 

Theorem 2.7. Let Bn denote the nth number. 

(1) If k = 1, then 

Bn+l = { [2] 
Bn [1;n] 

for n = 1 
for n > 1 

(2) If k > 1, then 

BnH { 
Bn 

B,.+, { 
B2n-l 

B,,. { 
B2n-2 = 

[3] 
[1;n-1,2] 

for n = 1 
for n > 1 

[2] for n = 2 
(1; n- 1] for n > 2. 

[Ok] for n = 1 
[Ok - 1; 1, ok - 2, 1, ok - 1] for n > 1 ---....--

n-2 times 

-1] for n = 1 
3; 1, 4, 1, 2] for n > 1 ---....--

n-2 times 

2] for n = 2 
3; 4, 3] for n > 2. ---....--

n-3 times 

Proof. (1) Let k = 1. Then Bn = 2Bn-1- Bn-2 and hence Bn = n. So 

[1; n] = 1 + = n + 1 = Bn+l 
n n Bn 

and 

[1· - 1 2] = 1 1 2n + 1 
' n ' + n - 1 + l 2n - 1 

2 

1 n 2n B2n 
(1;n-1] = 1+-- = -- = -- = --. 

n - 1 n - 1 2n - 2 B2n-2 

(2) Let k > 1. If n = 1. Then B2 = Ok and B1 = 1. So t = [Ok]· Let us 
assume that is satisfied for n- 1, that is, 

BEn =[0k-1;1,0k-2,1,0k-1]. 
n-1 '---.--' 

n-3 times 
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Hence 

[Ok - 1; 1, ok - 2, 1, ok - 11 = ok - 1 + 
'-v-" 1 + 0 2+ 
n-2 times k 

1+ 

The other cases can be proved similarly. D 

3. BALANCING NUMBERS. 

Recently, Behera and Panda [1] introduced balancing numbers n E z+ as 
solutions of the Diophantine equation 

(3.1) 1 + 2 + · · · + (n- 1) = (n + 1) + (n + 2) + · · · + (n + r) 
for some positive integer r which is called balancer or cobalancing number. If 
n is a balancing number with balancer r, then from (3.1) one has 

(3.2) r = -(2n + 1) + v'8n2 + 1 and n = 2r + 1 + v'8r2 + 8r + 1_ 
2 2 

Let Bn denote the nth balancing number and let bn denote the nth cobalan-
cing number. Then they satisfy the recurrence relation Bn+l = 6Bn - Bn-1 
and bn+l = 6bn - bn-1 + 2 for n 2': 2, with initial values B1 = 1, B2 = 6 
and b1 = 0, b2 = 2. From (3.2), we see that Bn is a balancing number iff 

+ 1 is a perfect square and bn is a co balancing number iff 8b; + 8bn + 1 is a 
perfect square. So we set Cn = J8B';, + 1 and Cn = + 8bn + 1 which are 
called the nth Lucas-balancing number and nth Lucas-cobalancing number, 
respectively (for further details see [14, 15, 16, 17, 18]). 

Using the recurrence relation, Panda and Behera derived the following re-
sults. 

Theorem 3.1. [1, Theorem 2.1] For any balancing number x, the functions 

F(x) = 2x)8x2 + 1, G(x) = 3x + )8x2 + 1 and H(x) = 17x + )8x2 + 1 

are also balancing numbers. 
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Applying the above theorem, one can say that F(x) is always even, whereas 
G(x) is even when x is odd and G(x) is odd when x is even. Further 

Theorem 3.2. (1, Theorem 4.1] If x andy are balancing numbers, then 

f(x, y) = x..j8y2 + 1 + yV8x2 + 1 

is also balancing number. 

The recurrence relation on balancing number is given below. 

Theorem 3.3. (1, Theorem 5.1] 

Bn+lBn-1 = (Bn + 1)(Bn- 1) 
Bn = BkBn-k - Bk-1Bn-k-1 for any positive integer k < n 

B2n = B;- B;_1 

B2n+l = Bn(Bn+l - Bn-1)· 

Like in Fibonacci numbers, Fm+kFm-k = F;,- the balancing 
numbers satisfy the following property. 

Theorem 3.4. (15, Theorem 2.1] Ifm and k are natural numbers and k < m, 
then (Bm + Bk)(Bm- Bk) = Bm+kBm-k· 

Also, 

Theorem 3.5. (15, Theorem 2.2] If Bm is the m-th balancing number, then 

B1 + B3 + · · · + B2m-1 = B! 

B2 + B4 + · · · + B2m = BmBm+l 

B1 + B2 + · · · + B2m = Bm(Bm + Bm+I)· 

Theorem 3.6. (1, Theorem 6.1] The generating function of the sequence Bn 
of balancing numbers is 

s 
g(s) = 1- 6s + s2 

and consequently 

Bn= L)-1)kC(n-k,k)6n-2k. 
k=O 

Theorem 3.7. (1, Theorem 8.1] If Bn is the n-th balancing number, then 

lim Bn+l = 3 + v's. 
n-+oo Bn 
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There is a connection between the sequence { (which is called a 
second order linear recurrence if the recurrence relation 

for n 2: 1 holds for its terms, where A, B ":/; 0, R0 and R 1 are fixed rational 
integers and IRol + IR1I > 0) and the Pell equation x2 - dy2 = 1 which is given 
below. 

Theorem 3.8. [10, Theorem 1] The terms of the second order linear recurrence 
R(6, -1, 1, 6) are the solutions of the equation x 2 - 8y2 = 1 for some integer y. 

Recall that in the previous section, we derived some algebraic identities for 
integer sequences involving the oblong numbers ok. If we take k = 2 in that 
sequence, then we get the sequence of balancing numbers that is, 
Eo = 0, B1 = 1 and 

(3.3) 

for n 2': 2 since 0 2 = 6. Consequently, all results obtained in the previous 
section are valid for k 
giving its proof. 

2. Thus we can give the following result without 

Theorem 3.9. Let En denote the n-th balancing number. Then 

(1) The sum of balancing numbers from 1 ton is 

= 5Bn- Bn-1 - 1 
L....., ' 4 . 
i=1 

(2) B2n = 34B2n-2 - B2n-4 and B2n+1 = 34B2n-1 - B2n-a for n 2': 2. 
(3) 

{ 
Bn+1- Bn-1 forn 2': 1 

an + f3n = 2Bn+1 - 6Bn for n 2': 0 
6Bn - 2Bn-1 for n 2': 0, 

where a= 3 + v'8 and f3 = 3- v'S. 
( 4) The eigenvalues of B are 

,\ (B)= (Bn-1 + 1)w-i- En 
1 w-2; - 6w-J + 1 

for j = 0, 1, 2, · · · , n- 1. 
(5) The spectral norm of B is 

I lEI I _ 5Bn-1- Bn-2- 1 
spec- 4 · 
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(6) For the matrices, 

M = [ ] , W = [ ] and A= [ 1 0 J , 

we have 
i) 

-En ] 
-En-1 

for n 1. 
ii) En+l = AMn At for n 1. 
iii) En = AMn-2 W At for n 2. 

iv) 

for n 1. 
v) If n 3 is odd, then 

n-1 n-1 
-2- . 

I: C( n - i, i)6n-2' t C(n- 1- i, i)6n-l-2i 
i=O i=O 

wn= 

(7) 

n-1 
-2- . 

I: C(n- 1- i, i)6n-l-2' 
i=O 

and if n 2 is even, then 

. 
L:C(n- i, i)6n-2' 
i=O 

n-2 
-2- . 

I: C(n- 1- i, i)6n-l-2' 
i=O 

(6] 

n-3 
-2- . 

I: C(n- 2- i, i)6n-2- 2' 
i=O 

n-2 
-2-

I: C( n- 1 - i, i)6n-l-2i 
i=O 

n-2 -2-

I: C(n- 2- i, i)6n-2- 2i 
i=O 

for n = 1 
BnH { 
En 

(5; 1,4' 1, 5] for n > 1 ..._...., 
n-2 times 

B,nH { 
(35] for n = 1 

(33; 1,32, 1,34] for n > 1 
E2n-l '-v-" 

n-2 times 

B,n { 
(34] for n = 2 

E2n-2 = (33; 1,32, 1, 33] for n > 2. 
'-v-" 

n-3 times 
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The rank of an integer N is defined to be 

(N) = { p if p is the smallest prime with pfN 
P ·fN · · oo 1 1s pnme. 

Thus we can give the following theorem. 

Theorem 3.10. The rank of Bn is 

p(Bn) = { 
13 

for every t:;::: 0. 

ifn = 2t + 2 
ifn = 6t + 3 
if n = 42t + 7 or n = 42t + 35 

Proof. Let n = 2t + 2. We prove it by induction. Let t = 0 then B2 = 6, so 
p(B2) = 2. Let us assume that Bn is 2 for n = t- 1, that is, p(B2t) = 2. So 

B2(t-1)+2 = B2t = 2a · u1 

for some integers a :;::: 1 and u1 > 0. For n = t, we get 

B2t+2 = 6B2t+l - B2t = 6B2t+! - 2a · u1 = 2(3B2t+l - 2a-l · ui). 

Consequently, we get p(B2t+2 ) = 2. 

Let n = 6t + 3 and t = 0 then B3 = 35, so p(B3 ) = 5. Let us assume that 
Bn is 5 for n = t - 1, that is, 

B3+6(t-1) = B3+6t-6 = B6t-3 = 5b . U2 

for some integers b:;::: 1 and u 2 > 0. For n = t, we get 

B6t+3 = 6B6t+2 - B6t+l 

= 6(6B6t+l - B6t) - B6t+l 

= 36B6t+l - 6B6t - B6t+l 

= 35B6t+I - 5B6t - B6t 

= 35B6t+l - 5B6t - 6B6t-l + B6t-2 

= 35B6t+l - 5B6t- 6(6B6t-2 + B6t-3) + B6t-2 

= 35B6t+l - 5B6t - 35B6t-2 + 6B6t-3 

= 5(7B6t+l- B6t- 7B6t-2 + 65b-l · u2). 

So p(B6t+3) = 5. The other assertion can be proved similarly. D 

Finally we can give the following theorem related to the limit of cross-ratio 
of four consecutive balancing numbers Bn, Bn+l, Bn+2 and Bn+3· 
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Theorem 3.11. Let Bn, Bn+l, Bn+2 and Bn+3 be four consecutive balancing 
numbers. Then 

Proof. Recall that the cross-ratio of four numbers a, b, c and d is defined to be 

(a- c)(b- d) 
[a, b; c, d] = (b- c)(a- d)" 

So the cross-ratio of four consecutive Bn, Bn+l, Bn+2 and Bn+3 numbers is 
hence 

(3 ) [B B B B ] (Bn- Bn+2)(Bn+l- Bn+3) 
.4 n, n+l; n+2> n+3 = (B _ B )(B _ B )" n+l n+2 n n+3 

Since Bn = 6Bn-1- Bn-2, we get Bn+2 = 6Bn+l- Bn and Bn+3 = 35Bn+l-
6Bn. So 

Bn - Bn+2 = -6Bn+l + 2Bn 

Bn+l - Bn+3 = -34Bn+l + 6Bn 

Bn+l - Bn+2 = -5Bn+l + Bn 

Bn- Bn+3 = -35Bn+l + 6Bn. 

Therefore {3.4) becomes 

[B B . B B ] _ ( -6Bn+l + 2Bn)( -34Bn+l + 6Bn) 
n, n+l> n+2> n+3 - { -5Bn+l + Bn)( -35Bn+l + 6Bn) 

and clearly we conclude that 

lim [Bn, Bn+l; Bn+2, Bn+3] = -7
8 

n--+oo 

as we wanted. 

Using these symmetries, we can give the following result. 

D 

Corollary 3.12. Let Bn, Bn+l, Bn+2 and Bn+3 be four consecutive balancing 
numbers. Then 

lim [Bn, Bn+3; Bn+2, Bn+l] = 8 
n--+oo 

lim [Bn, Bn+3; Bn+l, Bn+2] = -8
1 . 

n--+oo 
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The following two theorems are from (21] related to the integer solutions of 
the Pell equation 

depending on the balancing numbers B1 and B2. 

Theorem 3.13. (21, Theorem 2.1] For the Pell equation x2 - 6y2 = 1; 

(1) The continued fraction expansion of VB is 

(2) The fundamental solution is 

and the other solutions are (xn, Yn), where 

:: = [v4B2 ; 1 - 1 ; 2B1, y'4B2 + 1- 1, 2B1] 
n-1 times 

for n 2. 
(3) The solutions satisfy the recurrence relations 

for n 2 and 

Xn = V 4B2 + 1Xn-1 + 2B2Yn-1 

Yn = 2B1Xn-1 + y'4B2 + 1Yn-1 

Xn = (2y' 4B2 + 1 - 1) (xn-1 + Xn-2) - Xn-3 

Yn = (2y'4B2 + 1-1) (Yn-1 + Yn-2)- Yn-3 

for n 4. 

Theorem 3.14. (21, Theorem 2.3] The integer solutions of x2 - 6y2 = 1 are 
(xn, Yn), where 

n 

t_ C(n, 2i)( .../4B2 + 1)n-2i2i+1(B1B2)i if n is even 
i=O 

n-1 

?5 C(n, 2i)( .../4B2 + 1)n-2i2i+1(B1B2)i if n is odd 
i=O 
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and 
n-2 t C(n, 2i + l)h/4B2 + l)n-l-2i2i+1 Bi+1 if n is even 
i=O 

n-1 t C(n, 2i + 1)( ..)4B2 + l)n-l-2i2i+l Bi+1 if n is odd 
i=O 

for n 2. 
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