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ABSTRACT. Let k > 0 be an integer. Oblong (pronic) numbers are num-
bers of the form Oy = k(k+1). In this work, we set a new integer sequence
B = Bn(k) defined as Bo =0, By =1 and By, = Oy Bn—-1 — Bp—2 for
n > 2 and then derived some algebraic relations on it. Later, we give
some new results on balancing numbers via oblong numbers.
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1. INTRODUCTION

Fibonacci, Lucas, Pell and the other special numbers and their generaliza-
tions arise in the examination of various areas of science and art. In fact, these
numbers are special cases of a sequence which is defined as a linear combination

as follows:
(1.1) On+k = ClGn+k-1 + C20ntk—2 + -+ -+ Ckap,
where ¢y, co,- -+, cx are real constants. The applications and identities related

with these numbers can be seen in (3, 5, 6, 7, 9, 13].

Fibonacci numbers form a sequence defined by the following recurrence re-
lation: Fo =0, Fy =1 and F,, = F,,_1 + F,,_5 for all n > 2. The characteristic
equation of F, is 22 — x — 1 = 0 and hence the roots of it are oo = 1"'2‘/3 and
B = %ﬁ Johannes Kepler pointed out that the ratio of consecutive Fibonacci
numbers converges to the golden ratio as the limit, that is,

Fn

n—1

lim
n—o0o

= (.
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Like every sequence defined by a second order linear recurrence, the Fibonacci
numbers F,, have a closed—form solution. It is known as Binet formula

a™ — g

a-p

for n > 0. Lucas numbers L,, are defined by Lo = 2,L; =1 and L, = L,_3
+L, _o for n > 2. Its Binet formula is L,, = o™+ 8". There are a lot of algebraic
identities between Fibonacci and Lucas numbers [7, 9]. The Pell numbers are
defined by the recurrence relation Py = 0, P, = 1 and P, = 2P,,_1 + Ph_2
for n > 2. Some identities for Pell numbers can be found in {11, 20]. Also the
Pell-Lucas, Jacobsthal and Pell-Jacobsthal integer sequences are also famous

integer sequences.

F, =

In fact all of them are the special cases of the following two integer se-
quences: Let P and Q be non—zero integers and let D = P? — 4Q be called the
discriminant and assume that D # 0 (to exclude a degenerate case). For each
n > 0, define U,, = U,(P,Q) and V,, = V,,(P, Q) to be
(1.2) U,=U,(P,Q)=PUp_1 — QU,_2

Vn = Vn(P) Q) = PVn-—l - QVn-—2

for n > 2 with initial values Uy = 0,U; = 1 and Vy = 2,V; = P. The
characteristic equation of them is 22 — Pz 4+ Q = 0 and hence the roots of it

a=P+\/I232—4Q and 3 P-PP-4Q

- 2

are

So Binet formulas are hence
a® — Bn

U, =
a-p
Note that in (1.2), one has the following table:

and V,, =a" 4+ 38"

Q Un Vn

P
1 | —1 | Fibonacci sequence | Lucas sequence
2
1

—1 | Pell sequence Pell-Lucas sequence

—2 | Jacobsthal sequence | Pell-Jacobsthal sequence

There are a lot of algebraic identities on U, and V, (see [19]). Also for the

P -
companion matrix M = [ 1 OQ ] , one has

Un
Un—l

n

Vn—l

P
— Mn—l
2

= Mt [ (1) } and
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Further the generating function for U, and V,, is

T > 2— Pz >
Ll § LA N VS
1— Pz + Qx? ZUCC and 1- Pz + Qzx2 Z o

n=0 n=0

respectively (for further details see also [3, 7, 9, 12, 13, 19]).

2. INTEGER SEQUENCE VIA OBLONG NUMBERS.

Let k > 0 be an integer. Then it is known that oblong numbers are numbers
of the form

(2.1) Ok = k(k +1).

The first few oblong numbers are 0, 2, 6,12, 20, 30, 42, 56, 72,90, 110, - - -. So the
k—th oblong number represents the number of points in a rectangular array
having k& columns and k + 1 rows. Further the product of two oblong numbers
O -1 and Oy is another oblong number Oz2_1 (see [2]), that is,

O—10k((k = 1K][k(k +1)] = (K* — 1)k? = Oga_1.

Also the half of Oy is a triangular number, that is, Ty = 92-&. The connections
between oblong and triangular numbers were studied in [8].

In this section, we try to define a new integer sequence associated with Oy
and then derive some algebraic identities on it. For this reason, we set P = Oy
and @ = 1. Then we define the sequence B = B, (k) as Bo =0, B; =1 and

(2.2) By = OxBpn_1 — Bn_o

for n > 2. The characteristic equation of (2.2) is 2 — Oz + 1 = 0 and hence
the roots of it are

(2.3) a:Ok+‘20k_4 and ,BzOk— 2O’°_4.
So for n > 0, Binet formula is
a® — an
2.4 B,= —"
(24) —4

for k #£ 1. Now we can give the following results.

Theorem 2.1. Let B,, denote the nt* number.
(1) If k=1, then

=1
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(2) If k> 1, then

"~ (Ox—=1)B,—Bn_1—1

i=1

Proof. (1) Let k = 1. Then O; =2 and B,, = 2B,_1 — B,_2. So B, =n and
hence the sum of first n terms of B,, is ﬁgﬂ;—lz =T,.

(2) Let k > 1. Since B,, = OxB,_1 — Bp—2, we get B, + B,_3 = OxBr_;
and so
By + By = OBy
B3 + By = Oy Bs
B4 + By = Oy B3
(2.5)
B, 1+ Bp_3=0B,_2
B, + Byn_3 = OB, 1.
If we sum of both sides of (2.5), then we obtain
By+Bi+ -+ Bno+By+Bs+:-+ B, =0k(B1+Ba+ -+ Bn_1).

Adding B, _1 + B, + Bo + B1 + Ox(By + By,) to both sides of above equation,
we get the desired result. O

Now we can give the following theorem concerning the recurrence relation
on B,, numbers.

Theorem 2.2. Let B,, denote the nt* number, Then for n > 2, we have

(1) Ban = O1Ban—2 — Ban_4 and Bapy1 = O1Ban_1 — Ban—3 for k=1;
(2) Ban = (0% — 2)Byn—2 — Bay—4 and Bapy1 = (02 — 2) Ban_1 — Ban—s
for k> 1.

Proof. (1) Let k =1. Then B, = 2B, _1 — Bn_32. So By, = O1Bs,,_9 — Bap_4
and Bypi1 = O1Ban—1 — Ban_s.
(2) Let k > 1. Since Bap = OxBap—1 — Ban—2, we get
By, = Ox(OxBan—2 — Ban—3) — Ban—2
= (O} — 1)Ban—2 — OxBan_3
= (Of — 1)Ban—2 — Ox(OxBan_4 — Ban_s)
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= (0Of — 1)Ban—2 — Of Ban—4 + Ok Ban_s

= (Of = 2)Ban-2 + Ban-2 — O} Ban_4 + Ok Ban_s

= (Of —2)Ban—2 + Ot Ban-3 — Ban—4 — Of Ban—4 + OxBan_s

= (O} — 2)Ban-2 + O} Ban—4 — OxBan—5 — (1 + OF) Ban—4 + O Ban_s
= (0% — 2)Ban-2 — Bon-1.

The other assertion can be proved similarly. a

Now we can give the following theorem related to powers of & and .

Theorem 2.3. Let B,, denote the n—th number.
(1) If k =1, then a™ + ™ = 0.
(2) If k > 1, then

Bny1 — Bn_1 forn>1
a™ + 8" = O1Bny1 — OB, forn>0
OB, —01B,_1 forn>0.

Proof. (1) Let k = 1. Thena:ﬁz%lzl. Soa™ + 8" =2=0;.

(2) Note that Bn+1 + Bp_1 = O¢B,. So Bn+1 — B,_1=04B, —01B,,_1
and hence

n_ Bn n—-1 _ gn-1
Bnt1 — Bno1 = Ok (a b ) -0 (-a——L)

a—p a—p4
I Z[=0n o
- [a—ﬂ aw—M]+ﬁ[a~ﬁ ﬁ@—ﬂJ
=an+,3n‘

We see as above that B,y1 — B,_1 = o™ + 8". So
a” +B" = Bpy1 — Baoy
= 2«B'n+1 - (Oan - Bn—l) - Bn—l
= 2Bn+1 - Oan.

For the last assertion, we easily get

n __ A3n n-1_ Agn-1
OrBp — 01Bn_1 = Oy (a b ) -0 (a___,@_)

a—-f a—pf
_ n| Ok O, n| —Ok O,
‘“[a—ﬂ‘am—ﬁj+ﬁ[a—ﬁ+ﬂm—ﬂﬁ
Zan_*_’gn.
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Now we consider the circulant matrix for B,, numbers. Recall that a circu-
lant matrix (see [4]) is a matrix A defined as

[ ai a2 as to Ap-1 an
Qn ay ag T An—2 0Gn-1
an-1 Gan Qi T An-3 QAn-2
A= ,
as as as ce ax az
L a2 az a4 te an a;

where a; are constant. The eigenvalues of A are
(2.6) Ai(4) = arw™¥,

where w = e2_:‘i, t =+/—1and j = 0,1,--- ,n — 1. Therefore the circulant
matrix for B,, numbers is hence

i Bo Bl Bz Bn—l |
Bn—l BO Bl Bn—2
B._2 Bn_1 Bp Bn_3
2.7) B=B(B,) =
B, B, By - By |

Then we can give the following theorems.

Theorem 2.4. Let B,, denote the n—th number.

(1) If k =1, then B has no eigenvalues.
(2) If k > 1, then the eigenvalues of B are
(Bn—l + 1)10-‘7 - Bn

MB) = o T

forj=0,1,2,--- ,n—1.

Proof. (1) Let k = 1. Then @ = 8 = 1. So Binet’s formula is invalid. Therefore
B has no eigenvalues.

(2) If k£ # 1, then applying (2.6), we get

n—1
Ai(B) =Y Bew™*
k=0
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0

L[Sy - S gumsy
a-p k=0

1 [ar=-1  p"-1 }
a—-pB |low i -1 BwI-1

1 [(e" = 1)(Bw = 1) = (B = 1)(ow™ - 1)}

T a-81 (aw=7 - 1)(Bw=7 - 1)
1 _w‘j(a”ﬂ—aﬂ"—ﬂﬁ-a)—a"%—,@”}
T a-81 afw=% —wi(a+B)+1
1 _j (a",@—aﬁn—,3+a)
= ——w
w2 — Qw7 + 1 a—pf

3 1 a” - "
w2 — Okw‘j +1 o — ﬂ

. (Bn—l —+ l)w‘j — Bn
C wW —Opw I +1

The spectral norm for a matrix A = [a;j]nxm is defined to be

(2.8) 14| spec = max{/Ai},

where )\; are the eigenvalues of A” A for 0 < j < n — 1 and A denotes the
conjugate transpose of A. Hence we can give the following theorem which can
be proved by induction on n.

Theorem 2.5. Let B,, denote the n—th number.

(1) If k =1, then the spectral norm of B 1is

n(n —1)

—

(2) If k > 1, then the spectral norm of B is

(Ok —1)Bp—1 — Bpo—1
O —2 '

”B”sPec =

|1Bllspec =

Example 2.1. 1) Let k = 1 and n = 5. Then the eigenvalues of B B are

25 + 5v/5 25 — 5v/5
2 AF“—z_

The spectral norm is || B||spec = VAo = 10. Also %! = 10. So ||B||spec = 10.

)\0: 100, )\1 = 5 A3=)\1, /\4=)\2.
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2) Let k = 7 and n = 6. Then O; = 56, By = 175504 and B; = 9825089.
The eigenvalues of BéH Bg are
Ao = 100075714326225, A; = 93173941602225,
Ao = Mg = 98256156072372, A3 = A5 = 94808571993300.

The spectral norm is || B}|spec = 10003785. Also (Or-1)Bs—Bs—1 1055254 1 — 10003785.
7T
So

(07—-1)35 —B4— 1

= 10003785
O7 -2

[1Bllspec =

as we claimed.

Now we set the following matrices:

M= M(B,) = l gi _B]il } = l Olk _01 ] (companion matrix)
B: B O 1
W=W n) = =

A=A(Bn):[Bl BO]=[1 o].
Then we can give the following theorem.

Theorem 2.6. Let Oy denote the k—th oblong number and B, denote the
n—th B, number. Then

1)

Bn "Bn—l

forn > 1.
(2) Bpy1 = AM™A? forn > 1.
(3) B, = AM™2W At for n > 2.

(4)
B B
Mn—IW — n+1 n
Bn Bn—l :I
forn >1.

(5) If n > 3 is odd, then
S C(n —1,i)0p~ % > C(n—1-i,5)0p 7%
=0 =0

wr =
S C(n—1-i,i)0p~ 1% C(n —2—1i,3)0p727%
L =0 =0 .

and if n > 2 is even, then
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C 3 . n52 ]
C(n—1i,i)0r~% C(n—1-—1i,3)0p 7%
Wn = 3
n=2 n=2
2 . N An—1—2i 2 . o\ yn—2-2%
> C(n—1-1,7)0; Y. C(n—2-14,1)0f
ot 2=0 1,=0 -

here C(n,1) denotes the binomial coefficient.

Proof. (1) We prove it by induction on n. Let n = 1. Then

M=

O -1
1 0o |’

So it is true for n = 1. Let us assume that this relation is satisfied for n — 1,
that is,

_ B —Bn1
MMl = " " .
Bn—l —'Bn—2 ]
We will show that this relation is satisfied for n. Since M™ = M"~ 1. M, we
get
M™ = Oan - Bn—l ‘"Bn _ Bn+1 —Bn
B Oan—l - Bn-—2 —Bn—l - Bn _Bn—l ‘
(2)
B -B 1
AMnAt — ( n+1 n+1
o) e B |
_ Bn+1
(v o] | %
= Bn+1-
3)
[ Booi —Ba- o 11[1
n—2 t __ n—1 n—2 k
AM WA—[lo]LBnﬁz —B,_3 1 0][0]
. [ Bn—l "Bn—2 Ok
=[1 0] Bns —Bus || 1
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_ [ 10 } [ OxB,_1— Bp_2

OxBpn-2 — Bn-3
= Oan-l - Bn—2
= B,.
(4)
[ B, —B._ Or 1
n_1W — n n—1
M Bn—l _Bn—2 1 0

Oan - Bn—l Bn
OkB'n—l - Bn—2 Bn—l

[ Bn+1 Bn

(5) Let n be odd and let n = 3. Then
1
> CB-1,1)0;7% = O} + 204
=0

1
d C(@2-4,i)0F ¥ =0} +1
=0

0
> C(1—-4,8)0,7% = O.
1=0

Hence ]
[ 0% +20, 0%+1

WS =
02+1 O

L J
Also by simple calculation, we see that

[ 03420, O2+1 ]
O,%-{-l Oy, '

L -

W =

So it is true for n = 3. Let us assume that this relation is satisfied for n — 2,
that is,

[ 15_3 .o n—2-2¢ nT—‘? .o n—3—-21 |
> C(n—2-14,3)0; Z:OC(n—B—z,z)Ok
=0 1=
Wn—2 —
= 3-2 z .\ An—4—2i
Y C(n—-3—-4,0)0""" 5 C(n—4-14,1)0
L =0 =0 .
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Since W™ = W"~2W?2, we set

Hence we easily deduce that

n—3 n—3a
i N
Wi = (Ol% +1) Z C(n—2—1, i)02—2—21 + O Z C(n—3—i, i)OZ‘3‘2’
i=0 1=0
= (02 +1) O 2 +C(n—-3,1)0p"*4+C(n—4,2)07 ¢ + ...
‘ +O(25L, 228008 + O(251, 253)04

O3 +C(n—4,1)0F % +C(n~5,2)07 " + -
+ Ok n-1 n—5ym2 n=3 n—3yn0
+C( 9 17 9 )Ok + C( 2 1 92 )Olc

=O0p +[C(n—3,1) + 2|0} 2 +[C(n—4,2) + C(n —3,1) + C(n — 4,1)] O ~*

n-1n-3 n+l1l n—-5 n—1 n-5 3
C , C , C , 1)
++[(2 5 ) +C(— 5—) +C0(— 2)]k
n—1 n-3 n—3 n—3
c ; c , o
+[(2 )+ 2)]k
1 -1
=0} +C(n—1,1)0F"2 4 C(n - 2,2)00 4 +...+C(";f o —1)0
n—1
2 .
=) C(n—1i,i)0p %,
=0
Similarly it can be shown that
nr3 n=3
2 ) 5 v
Wi =0k | D Cln-2-4,9)0p 7272 | + | 3 C(n-3—4,i)0p 3%
i=0 1=0
n-1
2 .
= Z C(n —1- i, ,L-)O’ch—l—m
1=0
nyd n=5
2 p)
Wi = (O% +1) Z Cn—-3—1, i)OZ_B_zz + O Z Cn—4-—i, i)o'lrct—4—2z
i=0 =0
n=1
2 .
= Z C(n -1 i’i)oz—l—%,
n—3 n—>5
2 ' - '
W3y = Oy Z C(n—-3- 1,1)02—3—21 + Z Cn—4—1, i)O;‘_4_2’
i=0 1=0
n—3

-2 )
=Y C(n—-2-i,9)0p 272,
—~

So it is true for n. The other case can be proved similarly.
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2.1. Simple Continued Fraction Expansion of B,, Numbers. In this sec-
tion, we want to consider the continued fraction expansion of the ratio of two
B,, numbers.

Theorem 2.7. Let B,, denote the nt* number.

(1) If k=1, then

Bri1 { 2] forn=1

B, [1;n] forn>1
Bany1 (3] forn=1
Bon_1 1;,n—-1,2] forn>1

Bay, 2] forn =2
Bon_o [I;m—1] forn > 2.

(2) If k> 1, then

B [Ok] forn=1

=1 [0c-11,0.-21,0,-1] forn>1
n—2 times

2 =

Bopys 2 [Olzc 1] 2 forn=1

B OF —3;1,0; —4,1,07 - 2] forn>1
n—1 S——
n—2 times

B, [O% — 2] forn =2

=¢ [0%}-3;1,0? —4,1,02 - 3] forn>2.
BZn—2 Nttt et

n—3 times

Proof. (1) Let k =1. Then B,, = 2B,_1 — B,,_» and hence B,, = n. So

1 n+1 Bn+1
1: =1 - = = —
Lnl=1+—=— B,
1 _2n+1_82n+1

Ln-1,2=1 = _
L= L = T T = 571~ By

and
1 n 2n BZn

[1;n_1]:1+n—1 =n—1:2n~2:an_2'

(2) Let k> 1. If n. = 1. Then By = Ok and B; = 1. So £2 = [O]. Let us
assume that is satisfied for n — 1, that is,

=[Ok — 11,0, — 2,1,04 — 1].
e —

n—3 times

Bn-—l
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Hence
1

Ok —1;1,0, —2,1,0, — 1] =0 — 1+ 1
. 1+ Oj—24 1
n—2 times 14-.-
Ok — 2+ T—=1—
o=t
1
=0, -1+ i
1+ —1+0, -1+ 1
1+
Uk-—l
1
= Ok~ 14—y
el
_ Bn+1
B,
The other cases can be proved similarly. |

3. BALANCING NUMBERS.

Recently, Behera and Panda [1] introduced balancing numbers n € Z* as
solutions of the Diophantine equation

(3.1) 1424 --+(n-1)=n+1D)+n+2)+ -+ (n+r)

for some positive integer r which is called balancer or cobalancing number. If
n is a balancing number with balancer r, then from (3.1) one has

—(2n+1)++8n2 +1 2r +1+ 82+ 8r +1
r= and n = .
2 2

Let B,, denote the nt® balancing number and let b, denote the nt* cobalan-
cing number. Then they satisfy the recurrence relation B, = 6B, — Bp_1
and by,4; = 6b, — b,_1 + 2 for n > 2, with initial values By = 1,B; = 6
and b; = 0,by = 2. From (3.2), we see that B, is a balancing number iff
8B2 +1 is a perfect square and b, is a cobalancing number iff 862 + 8b,, + 1 is a
perfect square. So we set C,, = \/8B2 + 1 and ¢, = \/W which are
called the nt* Lucas-balancing number and n** Lucas—cobalancing number,
respectively (for further details see [14, 15, 16, 17, 18]).

(3.2)

Using the recurrence relation, Panda and Behera derived the following re-

sults.

Theorem 3.1. [1, Theorem 2.1} For any balancing number x, the functions
F(z) =2zv/822+1, G(z) =3z + /822 +1 and H(z) =17z + /8x2 + 1

are also balancing numbers.
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Applying the above theorem, one can say that F(z) is always even, whereas
G(z) is even when z is odd and G(z) is odd when z is even. Further

Theorem 3.2. [1, Theorem 4.1] If z and y are balancing numbers, then

f(z,y) =2v8y> + 1+ yv8a2 +1

is also balancing number.

The recurrence relation on balancing number is given below.

Theorem 3.3. [1, Theorem 5.1]

Bn+1Bn_1 = (Bn + 1)(Bn — 1)
B, = BiB,,.x ~ Bi..1By k-1 for any positive integer k < n
Bayn, = Bv21, - B121—1

B2n+1 = Bn(Bn+1 - Bn—l)-

Like in Fibonacci numbers, FrpyxFpn_ = F2, — (—1)m+kF,3, the balancing
numbers satisfy the following property.

Theorem 3.4. [15, Theorem 2.1] If m and k are natural numbers and k < m,
then (Bm + Bk)(Bm — Bk) = Btk Bm—k-

Also,
Theorem 3.5. [15, Theorem 2.2] If B, is the m—th balancing number, then

B1+Bg+"'+Bzm_1=B,,2n
BQ+B4+"'+Bzm=BmBm+1
By + By + -+ + Bam = Bin(Bm + Bimy1)-

Theorem 3.6. [1, Theorem 6.1] The generating function of the sequence B,

of balancing numbers is
s

96) = 6752

and consequently
13]
B, = (-1)*C(n — k, k)6™ "2,
k=0

Theorem 3.7. [1, Theorem 8.1] If B, is the n—th balancing number, then

lim %=3+\/§.

n—oo n

24



There is a connection between the sequence {R,}%2, (which is called a
second order linear recurrence if the recurrence relation

Rn = ARn—l + BRTL—2

for n > 1 holds for its terms, where A, B # 0, Ry and R; are fixed rational
integers and |Ro| + |R;| > 0) and the Pell equation z2 — dy? = 1 which is given
below.

Theorem 3.8. [10, Theorem 1] The terms of the second order linear recurrence

R(6,—1,1,6) are the solutions of the equation z% — 8y? = 1 for some integer y.

Recall that in the previous section, we derived some algebraic identities for
integer sequences involving the oblong numbers Oy. If we take k = 2 in that
sequence, then we get the sequence of balancing numbers {B,}32,, that is,
By =0, By =1 and

(3.3) Bn=6Bn_1— Bn_s

for n > 2 since O, = 6. Consequently, all results obtained in the previous
section are valid for £ = 2. Thus we can give the following result without

giving its proof.
Theorem 3.9. Let B,, denote the n—th balancing number. Then

(1) The sum of balancing numbers from 1 to n is

- 5B, — Bp_1 — 1
;Bi = n .

(2) Bgn = 34Bgn_2 - an_4 and B2n+1 - 34Bgn_1 - Bgn_3 fOT‘ n Z 2.
(3)
Bny1—Bn_1 forn>1
o"+B8" =< 2Bp41 —6B, forn>0
6B, —2B,_1 forn>0,

where o = 3 + /8 andﬂ=3~\/§.
(4) The eigenvalues of B are
(Bn—l + 1)w_j - Bn
w2 —6wI +1

Ai(B) =
forj=0,1,2,--- ,n—1.
(5) The spectral norm of B is

5l}n—l - Bn—2 -1
1 .

|| Bllspec =
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(6) For the matrices,

6 -1 6 1
M=[1 . },W_{l } andA=[1 0],
we have
i)
Bn+1 ~Bn
M"™ =
Bn _Bn—l :I
forn > 1.
ii) Bpy1 = AM™A® forn > 1.
iii) B, = AM™2W A* for n > 2.
iv)
B,.1 B
M'n—lW — n+ n
Bn Bn—l ]
forn > 1.
v) If n > 3 is odd, then
r 'nT—l ' n;l .
> C(n —i,i)6n~% Y. C(n—1—14,i)6n"1-2
=0 1=0
wWn =
n—1 n—3
2 . 2 .
S C(n—1-14,i)6"" 1% S C(n—2—1i,i)6" 2%
L =0 1=0
and if n > 2 is even, then
Y C(n —1i,i)6"n"% S C(n—1—34,i)6n"1-%
=0 =0
wWn =
Cn—1-14,4)6" 12 S Cn—-2- i,i)6n2%
L /=0 i=0
(7)
B f 6] forn=1
T =¢ [5; 1,4, 1,5] forn>1
B, ~—~
\ n—2 times
B [35] forn=1
B—z’“’—l ={ [33; 1,32, 1,34] forn>1
n— S~~~
2 ' 1 n—2 times
B ( (34] forn =2
3 2~ (33 1,32, 1,33 forn>2.
n— aadd
n-2 n—3 times
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The rank of an integer N is defined to be

p if p is the smallest prime with p|N
p(N) = e
oo if IV is prime.

Thus we can give the following theorem.

Theorem 3.10. The rank of B,, is

2 ifn=2t+2
p(Bp) = 5 ifn=6t+3
13 ifn=42t4+7 orn =42t + 35

for every t > 0.

Proof. Let n = 2t + 2. We prove it by induction. Let ¢t = 0 then By = 6, so
p(B3) = 2. Let us assume that B, is 2 for n =t — 1, that is, p(Ba:) = 2. So

Byt-1)+2 = Bat = 2% - uy
for some integers a > 1 and uy > 0. For n = ¢, we get
Bytta = 6Bgiy1 — Bay = 6By 1 — 2% - ug = 2(3Bogpr — 2% ).
Consequently, we get p(Bat12) = 2.

Let n = 6t + 3 and t = 0 then Bs = 35, so p(Bs) = 5. Let us assume that
B, is 5 for n =t — 1, that is,
Bsy6(¢-1) = Bayet—6 = Ber—3 = 5" - ug
for some integers b > 1 and us > 0. For n = t, we get
Bgt+3 = 6Bst+2 — Bet+1
= 6(6Bst+1 — Bet) — Bet+1
= 36B¢t+1 — 6Bg; — Bt
= 35Bgt+1 — 5Bgt — Bt
= 35Bgt+1 — 5Bgt — 6Bg—1 + Bgt_2
= 35Bst+1 — 5Bst — 6(6Bss—2 + Be:—3) + Bes—2
= 35Bs6t11 — 5Bet — 35Bs;_2 + 6Bgt_3
= 5(7Bet+1 — Bet — TBet—2 + 6571 - uy).

So p(Bst+3) = 5. The other assertion can be proved similarly. O

Finally we can give the following theorem related to the limit of cross-ratio
of four consecutive balancing numbers B,,, By t1, Bny2 and Bpys.
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Theorem 3.11. Let B,,Bn+1, Buyo and B, 13 be four consecutive balancing
numbers. Then 8

nli)n;o[Bna Bn+1; Bn+2a Bn+3] = 7

Proof. Recall that the cross-ratio of four numbers a, b, c and d is defined to be
' _ (a —c)(b—4d)
[aab,cvd] - (b_c)(a_d)'
So the cross-ratio of four consecutive B, Bny1, Bnyo and B,+3 numbers is
hence
(Bn — Bni2)(Bnt1 — Bnys)

3.4 B, Bpi1; Bpyo, Brys] = .
(3.4) [ +15 Bn2, B3] (Bori = Boss)(Bn — Boys)
Since B, =6B,_1 — B,,_2, we get By, 2 =6B, 1 — B, and B, 413 = 35B,41 —
6B,,. So

B, — Bnyp = —6Bny1 + 2B,
Bnyy — Buys = —34Bos1 + 6B,
Bnt1 — Bpy2 = —5Bn1 + B,

B, — B,i+3=-35B,4+1 + 6B,.

Therefore (3.4) becomes

(=6Bny1 + 2B,)(—34Bp41 + 6B,,)
(=5Bnt1 + By)(—35Bn41 + 6B,,)

[BTL’ Bn+1, Bn+2, Bn+3] =

and clearly we conclude that
. 8
lim [Bna Bn+1; Bn+27 Bn+3] ==

n—oo 7

as we wanted. [

Using these symmetries, we can give the following result.

Corollary 3.12. Let B, Bp+1, Bnyo and B3 be four consecutive balancing
numbers. Then

ool 3

lim [Bn, Bnt1; Bnts, Bnyo] =

n—oo

lim [Bna Bn+2; Bn+3, Bn+1] =-7

n—oo

-1
lim [Bn: Bn+2; Bn—}-l) Bn+3] =
n—oo 7
l_i+m (Bn, Bn+3; Bnt2, Bny1] =8
. 1
lim [Bna Bn+3; Bn+1; Bn+2] = g

n—oo
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The following two theorems are from [21] related to the integer solutions of
the Pell equation

z2-6y2=1
depending on the balancing numbers B; and Bs.

Theorem 3.13. [21, Theorem 2.1 | For the Pell equation z2 — 6y* =1,

(1) The continued fraction expansion of /6 is

V6 = —————“13224”_1;231,\/432“—1 .

(2) The fundamental solution is

(wl,yl) = (\/ 4Bs + 1, 231)

and the other solutions are (z,, y,), where

In _ —_—————szz“'l;zBl, V4B, +1—1,2B;
Yn ~ -~ ’

n—1 times

forn > 2.
(3) The solutions satisfy the recurrence relations

ZTn = 4By + 1z,_1 + 2Boyn 1

Yn = 2Blil"n—l + 4B2 + 1yn—1
forn > 2 and

Tn = (2v/4By+1—-1)(zp_1 +Tp_2) — Tpn_3
Yn = (2v/4B2+1—-1) (Yn-1 + Yn-2) — Yn-3

for n > 4.

Theorem 3.14. [21, Theorem 2.3] The integer solutions of z* — 6y* = 1 are

(Tn,yn), where

C(n,2i)(v4By + 1) 2241 (B1 Ba)*  if n is even

o

1=0

Tn =

n—1

S C(n, 2)(vAB; ¥ 1)"~22+1(B1By)'  if n is odd

=0
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and

n-2
52 C(n, 2 4+ 1)(vABg + 1)»~122¢+1 BBl if n is even
=0
Yn =
25 oy
C(n,2i+ 1)(v/4By + 1)» 172124+ BBl if n is odd
i=0
formn > 2.
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