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Abstract

The linear arboricity la(G) of a graph G is the minimum number
of linear forests which partition the edges of G. In this paper, it is
proved that if G is a planar graph with maximum degree A > 7 and
every 7-cycle of G contains at most two chords, then la(G) = [#]
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1 Introduction

Throughout this paper, we only consider finite, simple and undirected
graphs. For a real number z, [z] is the least integer not less than z and
|z] is the largest integer not larger than z. Let G be a graph with vertex
set V(G) and edge set E(G), we use A(G) and 0(G) to denote the maxi-
mum (vertex) degree and the minimum (vertex) degree, respectively. All
undefined terminologies and notations follow that of Bondy and Murty [2].

A linear forestof a graph G in which each component is a path. A map ¢
from E(G) to {1,2,--- ,t} is called a t-linear coloring if (V(G), ¢~ 1(c)) is a
linear forest for 1 < o < t. The linear arboricity la(G) of a graph G defined
by Harary [9] is the minimum number ¢ such that G has a ¢-linear coloring.
Akiyama, Exoo and Harary [1] conjectured that la(G) = [icz)il] for every
regular graph G. It is obvious that la(G) > [A—(QG—)] for any graph G and
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la(G) > [M%Lﬂ] for any regular graph G. So the conjecture is equivalent
to the following Linear Arboricity Conjecture (for short LAC):

Conjecture 1.1. (LAC) For any simple graph G,

A(G)

22 <ta(e) < 1R

. 1)

Although Péroche [10] showed that LAC is an NP-hard problem. In
fact, the linear arboricity has been determined for many classes of graphs
and some corresponding results can be found in [1, 6, 7, 8, 15, 17]. Many
results are also obtained for planar graphs, see [3, 4, 11, 13, 16]. Up to
now, LAC has already been proved to be true for all planar graphs, see
[14, 18]. But determining the planar graphs with linear arboricity |-A—(2G—)'|
(or [%1) are still an open problem.

In the following, we only consider the planar graph G with maximum
degree A > 7. Wu [16] et al. proved that if G does not contain 4-, 5-cycles,
then la(G) = [A—(QG—)] Chen [4] and Wang [13] et al. improved this result
and got that if G does not contain chordal i-cycles for some i € {4, 5,6, 7},
then la(G) = [—A—(zgl] Here, we generalize this result and get the following

result.

Theorem 1. Let G be a planar graph with mazimum degree A > 7. If
every T-cycle of G contains at most two chords, then la(G) = [#]

We first introduce some more notations and definitions. Let G be a
planar graph with face set F'(G). For a vertex v of G, the degree d(v) is the
number of edges incident with v, and for a face f of G, the degree d(f) is
the length of the boundary walk of f. Let uv € E(G) and d(u) = k, then
we call vertex u is a k-neighbor of v. A k-verter, k™ -vertex or a kt-vertex
is a vertex of degree k, at most k or at leat k, respectively. Similarly, we can
define a k-face, k™ -face and a k*-face. A k-face with consecutive vertices
v1,V2,- -+ ,Vk along its boundary in some direction (such as the clockwise
order) is often said to be a (d(vi),d(v2),-- ,d(vk))-face. Two cycles are
said to be adjacent if they share at least one edge and two cycles are said
to be intersecting if they share at least one vertex.

For a t-linear coloring ¢ and a vertex v of G, we denote by C;(v) the
set of colors appears i times at v, where ¢ = 0,1,2. Then

Co()] +|Co ()] +1Co(v)| =t.
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Let z be a vertex of G, denote p(z) = (p(zy1), ¢(zy1), -, p(zyxk)), where
vertices y1,y2, - -+ , Yk are distinct neighbors of z. For any two vertices v and
v, let Cy(u,v) = CZ(u) UCE(v)U(CL(u)NCL(v)), i.e., Cyp(u,v) is the set of
colors that appear two times at v and v. A monochromatic path is a path
of whose edges receive the same color. For two different edges e; and ey of
G, they are said to be in the same color component, denoted by e; > eq if
there is a monochromatic path of G connecting them. Furthermore, if two
ends of e; are known, i.e., e; = z;y;(¢ = 1,2), then z1y; <> z2y2 denotes
more accurately that there is a monochromatic path from z; to y» passing
through the edges x1y1 and z2y2 in G (i.e., y1 and z3 are internal vertices
in the path). Otherwise, we use z1y; ¢ Zays (or e; +» e3) to denote that
such monochromatic path passing through them does not exist. Note that
T1Y1 ¢ Toyz and 1y <> Yoz are different. (u,i) <> (v,4) denote that u
and v have a monochromatic path of color i between them. The number
of d-vertices adjacent to a vertex v is denoted by ng4(v) and the number of
d-faces incident with a vertex v is denoted by fi(v).

2 Proof of Theorem 1

In [5], it is proved that la(G) = I'A—(Q—G—)'l holds for an arbitrary planar graph
G with maximum degree A > 9. It suffices to prove the following result.

(*) Let G be a planar graph such that A(G) < 8 and every T-cycle of G
contains at most two chords. Then G has a 4-linear coloring.

Let G = (V,E, F) be a minimal counterexample to (*) in terms of the
number of edges. We first show some known properties.

Lemma 1. [13] let uv € E(G) and ¢ be a 4-linear coloring of G — uv.
Then the following results hold.

(1) [Cyp(u,v)| = 4;

(2) If there is a color i such that i € CJ(u) NCy(v), then (u,i) < (v,1);

(3) dg(u) + dg(v) > 10;

(4) If wv is incident with a 3-cycle vvwu and d(u) + d(v) = 10, then
d(w) = 8;

(5) If d(u) = 7, d(v) = 3 and uv is incident with a 3-cycle, then all
neighbors of u except v are 4 -vertices.

By Lemma 1, we obtain that

405
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(@) 5(G) > 2.
(b) Any two 4~ -vertices of G are not adjacent.
(¢) Any 3-face is incident with three 5*-vertices, or at least two 6%-

vertices.

(d) Any 7~ -vertex has no neighbors of degree 2.

Note that in all figures of the paper, vertices marked e have no edges of
G incident with them other than those shown and pair of vertices marked

o can be connected to each other.
Lemma 2. [4, 11, 13] G has no configurations depicted in Fig. 1.

Proof. The proofs of (1), (3) and (6) can be found in [13], the proof of (2)

can be found in [11] and the proofs of (4), (5) and (7) can be found in [4],
O

respectively.

Fig. 1. Reducible configurations of Lemma 2.

A2 A2 A
(1) @) 6)

Fig. 2. Special configurations of G depicted in Lemma 3(a).

It is easy to obtain the following lemma, so we omit its proof here.

Lemma 3. If a planar graph G with 7-cycles contains at most two chords
and 6(G) > 2, then we have
(a) G has no configurations depicted in Fig. 2, where all the vertices

showing in Fig. 2 are different.
(b) Every 6T -vertex v is incident with at most [4dév)J 3-faces.
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By the Euler’s formula |V| —| E| + |F| = 2, we have

> (2d(v) —6) + > (d(f) — 6) = —12 < 0. (2)
veV fEF
We first define ch to be the initial charge. Let ch(v) = 2d(v) —6 for each
v € V(G) and ch(f) = d(f) — 6 for each f € F(G). Then we will reassign
a new charge denoted by ch/(z) to each z € V(G) U F(G) by means of the
discharging rules. Since our rules only move charges around, and do not
affect the sum, we have

Yoo k@)= Y, ch(z)=-12. (3)

€V (G)UF(G) 2€V(G)UF(G)

Now, let us apply the following rules to redistribute the weight that
leads a new charge ch/(z).

R1 Each 8-vertex sends 1 to each of its adjacent 2-vertices.
R2 Let f be a 3-face uvw such that d(u) < d(v) < d(w).

R2.1 If d(u) < 3, then f receives 3 from each of v and w.

R2.2 If d(u) = 4, then f receives 3 from u and £ from each of its
incident 6T -vertices.

R2.3 Suppose d(u) = d(v) = 5. If some of u and v is incident with five
3-faces, say the vertex is u, then f receives % from wu, g from v , and 1 from
w. Otherwise, f receives % from wu, % from v , and ;i— from w.

R2.4 If d(u) = 5,d(v) > 6 and d(w) > 6, then f receives 1 from u, §
from v and % from w. ,

R2.5 If d(u) > 6, then f receives 1 from each of its incident vertices.
R3 Let f be a 4-face.

R3.1If f is incident with two 3~ -vertices, then each 7*-vertex incident
with f sends 1 to f.

R3.2 If f is incident with a 37 -vertex and a 4-vertex (or 5-vertex), then
each incident 7-vertex of f sends %, and the 4-vertex (or 5-vertex) sends
% to f.

R3.3 If f is incident with a 3~-vertex and three 6-vertices, then each
incident 6+-vertex of f sends 2 to f.

R3.4 If f is incident with four 4T-vertices, then f receives % from each
of its incident 4t-vertices.

R4 Let f be a 5-face. If f is incident with two 3~ -vertices, then f receives
% from each of its incident 7t-vertices. Otherwise, f receives % from each

of its incident 4t-vertices. -
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In the following, we will show that ch’(z) > 0 for each z € V(G)UF(G),
a contradiction to (3), this completes the proof.

Let f € F(G). Clearly, ch/(f) = ch(f) = d(f) —6 > 0if d(f) > 6. If
d(f) =5, then f is incident with at most two 3~ -vertices by Lemma 1 and
then we can obtain that ch’/(f) > ch(f) + min{3 x 3,4 x 4,5 x 1} =0 by
R4. If d(f) = 4, the ch/(f) > ch(f) +min{2x 1,2x 2+ 1 3x 2 4x1}=0
by R3. Suppose that d(f) = 3. Then f is not a (3,7, 7)-face, (4, 6, 6)-face,
(4,6, 7)-face, (5,5, 5)-face, (5,5, 6)-face and (5, 5, 7)-face by Lemma 1. Thus
ch(f) > ch(f)+min{2x 3,2x $4+ 3,8+ 8+1,2x L +5,3x1}=0by
R2.

Let v € V(G). If d(v) = 2, then ch/(v) > ch(v) +2 x 1 = 0 by RI.
If d(v) = 3, then ch/(v) = ch(v) = 0. If d(v) = 4, then ch/(v) > ch(v) —
4 x 2 =0 by R2, R3 and R4. Suppose that d(v) = 5. If f3(v) = 5, then
ch!(v) > ch(v) =5 x 3 = 0 by R2. Otherwise, ch/(v) > ch(v) — (f3(v) x  +
(5—f3(v))x3) = %’%(”) > 0 by R2 and R3. Suppose that d(v) = 6. Then
each neighbor of v is a 4%-vertex and f3(v) < 4 by Lemma 1 and Lemma
3(b). If f3(v) = 4, then ch’(v) > ch(v) —max{4x §+2x1,4x3+14+11 =0
by R2, R3 and R4. Otherwise, ch’(v) > ch(v)—(f3(v)x 3+(6—f3(v))x 2) =
221450 5 0 by R2 and R3.

Suppose that d(v) = 7. Then each neighbor of v is a 3"-vertex and
f3(v) < 5 by Lemma 1 and Lemma 3(b). We use f5(v) to denote the
number of 3-faces incident with v, each of which is incident with a 3-vertex.
Then f3(v) <2 by Lemma 1. Suppose that f3(v) = 0, that is to say, each
3-face incident with v is only incident with 4*-vertices. If f3(v) = 5, Then
ch’(v) > ch(v) —5x 2 —2x 3 =2 > 0by R2 and R3. Otherwise,
ch/(v) > ch(v) — (f3(v) x § + (7 — fa(v)) x 1) = £=L&0 > 0 by R2 and
R3. Suppose that f3(v) = 1. Then v is adjacent to only one 3-vertex, and
it follows that ch/(v) > ch(v) — (2 + (f3(v) — 1) x 2 + (7 — f3(v)) x 3) =
%3(0) > 0 by R2 and R3. Suppose that fi(v) = 2. If f3(v) < 4, then
ch'(v) > ch(v) — (2 x § + (f3(v) —2) x §+ (7 = fa(v)) x 3) = £2L) > ¢
by R2 and R3. Otherwise, v is incident with a face f such that d(f) > 4
and f is incident with at least four 4T-vertices, or d(f) = 3 and all vertices
incident with f are 67 -vertices. So ch’(v) > ch(v) — (2 x 3 + max{3 x § +
34+12x2+1+2x2})=0byR2andR3.

Let v be a 8-vertex. Then v is adjacent to at most two 2-vertices by
Lemma 1 and f3(v) < 6 by Lemma 3(b).

Case 1. v is not adjacent to any 2-vertex.
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Suppose f3(v) < 4. Then ch/(v) > ch(v) — (f3(v) x 3 + (8 — f3(v)) x
1) = 4;f2—3ﬂ > 0 by R2 and R3. Suppose f3(v) = 5. If fy(v) = 3, then
ch’(v) > ch(v) —maz{5 x %+1+%+%,5x 3+3x2} = 1> 0byR2and R3.
If f4(v) <2, then ch/(v) > ch(v) — (5% 2+ f4(v) X 1+ (8 =5 — fa(v)) X 3) =
22440 > 0 by R2, R3 and R4. Suppose f3(v) = 6, then f5(v) < 2 and it
follows that ch’(v) > ch(v) — (6 x 3 +2 x 1) = % > 0 by R2 and R4.
Case 2. v is adjacent to exactly one 2-vertex, say u.

Subcase 2.1. wv is incident with a 3-face.

Suppose that each neighbor of v except u and the 8-neighbor is a 4*-
vertex, i.e., ng(v) = 0. If f3(v) = 6, then ch’(v) > ch(v)—1—(3+5x2+1) =
13 > 0 by R2 and R4. Otherwise, ch’(v) > ch(v) — 1 — (2 + (f3(v) — 1) x
8+ (8~ f3(v)) x 3) = 11=20) 5 0 by R2 and RS3.

Let n3(v) > 1. Suppose f3(v) = 6. Then v is incident with two 5*-faces
and is adjacent to at most three 3-vertices, that is, n3(v) < 3 by Lemma 2.
If ng(v) = 3, then v is incident with a 3-face incident with all 6%-vertices,
and it follows that ch/(v) > ch(v)—1—-(4x3+3+1+1) =32 >0byR2,
R3 and R4. Otherwise, ch/(v) > ch(v)—1—-(3x3+3x3+2x1) =4 >0
by R2 and R4.

Suppose f3(v) = 5. If f4(v) = 3, then ch/(v) > ch(v) —1— (3 +4x 5 +
3 +2x1)=2>0byR2and R3. If f4(v) =2, then ng(v) < 3. Assume
n(v) = 3, then ch’(v) > ch(v)—1-(4x3+54+14+4) = 2 > 0 by R2 and R3.
Assume n3(v) = 2, then ch/(v) > ch(v)—1—maz{3x 3+2x2+1+3+1 3x
xS +34+3+4, 35 +2x 343+ +5,3x3+2x5+14+5} =0by R2,R3
and R4. Otherwise, ch/(v) > ch(v)—1-(2x3+3x24+2x2+1) =35>0
by R2, R3 and R4. If f4(v) = 1, then ng(v) < 3. Assume nz(v) = 3, then
ch'(v) > ch(v) —1—(4x2+2+324+2x1)=1>0byR2, R3 and R4.
Assume ng(v) = 2, then ch’(v) > ch(v)—1—maz{3x 3 +2x 2+ 341 4+
$:3x3+2x2+342x1} = 5 > 0byR2, R3 and R4. Assume n3(v) = 1,
then ch’/(v) > ch(v) —1— (2x 2 +3x5+3+2x1)=2>0byR2,R3
and R4. If f4(v) =0, then ch/(v) > ch(v)—1—(5x 3 +3x 3) =1 >0by
R2 and R4.

Suppose f3(v) = 4. If fy(v) = 3, then nz(v) < 3. Assume nz(v) = 3,
then ch/(v) > ch(v) —1—maz{dx 3 +1+2xZ+1, dx2+1+2x 2+ 1 4x
S43x2+4+13x34+5 4143424 3x2+2+2x3 4241 =1>0by
R2, R3 and R4. Assume n3(v) = 2, then ch’(v) > ch(v) — 1 —maz{3 x % +
SH1+3+2 41 3x 484+ ox 42 +2x 3414+ 4,2x
3+2x5+43x2+1} =5 > 0byR2, R3 and R4. Assume n3(v) = 1, then
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ch/(v) > ch(v)—1—(2x 34+2x2+4x3) = 1 > 0by R2and R3. If f4(v) < 2,
then ch/(v) > ch(v)—1—(4x 3+ f4(v) x 1+ (8—4— fa(v)) x 1) = 5=2[a0) ~ ¢
by R2, R3 and R4.

Suppose f3(v) = 3. If fa(v) = 5, then nz(v) < 4. Assume nz(v) = 4,
then ch'(v) > ch(v)—1—-maz{3x 3+2x14+2x 242 3x34+2x1+3x 2} =
2 > 0 by R2and R3. Assume n3(v) = 3, then ch/(v) > ch(v) —1—maz{3x
Spi42x342xZ3xir2xd43x2oxd+54+143x3+2}=2>0
by R2 and R3. Assume n3(v) < 2, then ch/(v) > ch(v) —1— (3 x 2 +
1+4x3)=1>0by R2 and R3. If f4(v) < 4, then it follows that
ch'(v) > ch(v) —1— (3x &+ f4(v) X 1+ (8 —3— fa(v)) x 3) = =4fs0) 5
by R2, R3 and R4.

Suppose f3(v) < 2, then ch’(v) > ch(v)—1—(f3(v)x 3+(8— f3(v))x1) =
2250 > 0 by R2 and R3.

Subcase 2.2. Two faces incident with uv are 4*-faces.

Note that f3(v) < 4 by Lemmas 2 and 3. Suppose f3(v) = 4. If f4(v) =
4, then ch/(v) > ch(v)—1—maz{3+3x2+3x3+1 dx3+142x 3411 >0
by R2 and R3. If f4(v) = 3, then ch/(v) > ch(v) —1—maz{2x 3 +2x 5+
3x14+4,2x3+2x3+2x14+34+3,2x3+2x54+2x1+3+3,2%
3+2x2+1+2x3+1}=1>0byR2 R3and R4. If f4(v) < 2, then
ch/(v) > ch(v) =1 — (4% 2+ f4(v) X L+ (8—4 — fa(v)) x 1) = 2220 5 ¢
by R2, R3 and R4.

Suppose f3(v) = 3. If fa(v) = 5, then ch/(v) > ch(v) —1 —maz{3x 3+
B3x1+2x2,3x24+2x14+3x2,2x34+543x1+34+3,2x34+54+3x1+
2x22x3+2+3x143+2}=¢>0byR2and R3. If f4(v) <4, then
ch/(v) > ch(v) = 1—(3x &+ f4(v) x 1+ (8 —3— fa(v)) x §) = X4l 5
by R2, R3 and R4.

Suppose f3(v) < 2. Then ch’(v) > ch(v) — 1 —(f3(v) x 3+ (8 — f3(v)) X
1):%@—)20byR2andR3.

Case 3. v is adjacent to two 2-vertices.

Then f3(v) < 4 and if u is a neighbor of v such that wv is incident with
a 3-face, then d(u) > 4 by Lemma 2(3).

Suppose f3(v) = 4. If f4(v) =4, then ch'(v) > ch(v) —2— (4 x 2 +4 x
3) = 0 by R2 and R3. If f4(v) = 3, then ch/(v) > ch(v) — 2 — maz{4 x S+
1+2x 34+ 4,4x24+1+3 4242} =1 > 0by R2, R3and R4. If f4(v) < 2,
then ch’(v) > ch(v)—2—(4x 34 f4(v) x 14+ (8—4— fa(v))x 1) = 221l 5 ¢
by R2, R3 and RA4.

410

' DIMarquIs &




J 113107 001-448 int NB_Ok-Proofs_PG 41 1_20%3-16_16:50:07_K

Suppose f3(v) = 3. If f4(v) = 5, then ch/(v) > ch(v) — 2 — maz{3 x
S2x1+42x3433x84+143x3+13x24+4x2423x2+
1+2x34+2413%x24142x2+2x2}=1>0byR2 R3andR4.
If f4(v) = 4, then ch/(v) > ch(v) —2 —maz{3x 3 +1+3x 2+ 1 3x
2+1+42x3+2+1}=2>0byR2 R3and R4 If f4(v) < 3, then
ch(v) > ch(v) —2—(3x 3+ fa(v) x 1+ (8 =3 — fa(v)) x 1) = BBL) 5 g
by R2, R3 and R4.

Suppose f3(v) = 2. If f4(v) = 6, then ch/(v) > ch(v) —2 —maz{2 x 2 +
Ax1+2x22x5+43x1+2x3+32x542x1+4x3,2x5+1+
4x34+22x24+1+2x2+3x2}=0DbyR2andR3. If f4(v) <5, then
ch(v) > ch(v) —2— (2% 3+ f4(v) x 14 (8 =2 — fa(v)) x }) = =41l 5. ¢
by R2, R3 and R4.

Suppose f3(v) = 1. If f4(v) = 7, then ch/(v) > ch(v) —2 —maz{2 +5 x
142x 2 24 3x1+4x 3, 2 42x1+4x3+2 54146x3} =1 > 0byR2and
R3. If f4(v) < 6, then ch'(v) > ch(v)—2—(3+ f4(v) x 1+(8—1—f4(v)) x 3) =
882854 > 0 by R2, R3 and R4.

Suppose f3(v) = 0. Then ch’(v) > ch(v) —2 -8 x1=0 by R3.

Hence we complete the proof of (*), that is, Theorem 1 is true.
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