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Abstract

Let k 2:: 3 be an integer, and let G be a graph of order n with n 2::
max{10,4k-3}, and8(G) k+1. IfGsatisfiesmax{dc(x),dc(y)}
nt1 for each pair of nonadjacent vertices x, y of G, then G is a frac-
tional k-covered graph. The result is best possible in some sense, and
it is an improvement and extension of C. Wang and C. Ji's result (C.
Wang and C. Ji, Some new results on k-covered graphs, Mathematica
Applicata 11(1)(1998), 61-64).
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1 Introduction

We consider only finite undirected simple graphs. Let G be a graph with
vertex set V (G) and edge set E (G). For any x E V (G), we denote by de (x)
the degree of x in G and by Ne(x) the set of vertices adjacent to x in G.
Set Ne[x] == Nc(x) u {x}. For any S V(G), we denote by G[S] the
subgraph of G induced by S, and by G - S the subgraph obtained from
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G by deleting vertices in S together with the edges incident to vertices in
S. If G[S] has no edges, then S is called independent. Let Sand T be
disjoint subsets of V(G). We denote the number of edges joining Sand T
by ec(S, T). We write 6(G) for the minimum degree of G.

Let 9 and f be two integer-valued functions defined on V(G) such that
o ::; g(x) ::; f(x) for each x E V(G). Then a spanning subgraph F of G
is called a (g, f)-factor if g(x) ::; dF(x) ::; f(x) holds for each x E V(G).
Let a and b be two integers with 0 ::; a ::; b. If g(x) == a and f(x) == b
for each x E V(G), then a (g, f)-factor is an [a, b]-factor. An [a, b]-factor is
called a k- factor if a == b == k. A graph G is called a k-covered graph if for
any e E E(G) there exists a k-factor containing e. Let h : E(G) -7 [0,1]
be a function. Let k 2 1 be an integer. If Le3x h( e) == k holds for each
x E V(G), we call G[Fh ] a fractional k-factor of G with indicator functional
h where Fi, == {e E E(G) : h(e) > O}. A graph G is fractional k-covered
if for each edge e of G, there exists a fractional k-factor G[Fh ] such that
h(e) == 1. If k == 1, then a fractional k-covered graph is called a fractional
I-covered graph. The other terminologies and notations can be found in
[1].

Many authors have investigated factors of graphs [2-7]. Liu and Zhang
[8] obtained a toughness condition for graphs to have fractional k-factors.
Zhou [9,10] gave some results about fractional k-factors of graphs. Li, Van
and Zhang [11] showed an isolated toughness condition for graphs to be
fractional k-covered graphs.

The following results on k-factors, fractional k-factors and fractional
k-covered graphs are known.

Theorem 1 [2] Let k be an integer such that k 2 3, and let G be a 2-
connected graph of order n with n 2 4k - 3, kn even, and 6(G) 2 k + 1. If
G satisfies max{de (x), dc(y)} 2 nt1 for each pair of nonadjacent vertices
x, y of G, then G is a k-covered graph.

Theorem 2 [8] Let k 2 2 be an integer. A graph G with IV(G)I 2 (k + 1)
has a fractional k-factor if t(G) 2 k - t.

Theorem 3 [9] Let k be an integer such that k 2 1, and let G be a con-
nected graph of order n such that n 2 9k - 1 - 4J2(k - 1)2 + 2, and the
minimum degree 6(G) 2 k. If INc(x) U Ne(y)1 2 + k - 2)}
for each pair of nonadjacent vertices x,y E V(G), then G has a fractional
k-factor.

Theorem 4 [11] Let G be a graph, and let k be an integer with k 2 2. If
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the minimum degree c5(G) k + 1 and the isolated toughness I(G) > k,
then G is a fractional k-covered graph.

In this paper, we give a new sufficient condition for a graph to be a
fractional k-covered graph. The main result is the following theorem, which
is an improvement and extension of Theorem 1.

Theorem 5 Let k 3 be an integer, and let G be a graph of order n with
n max{10, 4k - 3}, and 8(G) k + 1. If G satisfies

n+1
max{dc(x),dc(y)} -2-

for each pair of nonadjacent vertices x, y of G, then G is a fractional k-
covered graph.

2 Proof of Theorem 5

For any S V(G) and T == {x : x E V(G) \ S,dc-s(x) :S k}, we define
c(S, T) as follows,

(1) c(S,T) == 2, if S is not independent.

(2) c(S, T) == 1, if S is independent and ec(S, V(G) \ (S U T)) 1, or
there exists an edge e == UV, such that U E S, vET and dc-s(v) == k.

(3) c(S, T) == 0, if neither (1) nor (2) holds.

Li, Van and Zhang [12] obtained a necessary and sufficient condition for
a graph to be a fractional k-covered graph, which is very useful in the proof
of Theorem 5.

Lemma 2.1 [12] A graph G is a fractional k-covered graph if and only if
for any S V(G) and T == {x : x E V(G) \ S, dc-s(x) :S k}

8c(S, T) == klSI + dc-s(T) - klTI eis, T),

whereT == {x: x E V(G)\S,dc-s(x) :S k} anddc-s(T) == LXETdC-S(x).

Proof of Theorem 5. Suppose that G satisfies the conditions of The-
orem 5, but it is not a fractional k-covered graph. According to Lemma
2.1, there exists a subset S of V(G) such that

8c(S, T) == klSI + dc-s(T) - klTI :S etS, T) - 1, (1)
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where T == {x: x E V(G) \ S,dc-s(x) k}. In the following we consider
three cases.

Case 1. S == 0.
In this case, £(S, T) == O. In view of (1), we get

-1 tJc(S, T) == dc(T) - klTI (tJ(G) - k)ITI ITI 0,

a contradiction.

Case 2. lSI == 1.

In this case, £(S,T) 1. By (1) we have

o > tJc(S, T) == klSI + dc-s(T) - klTI
> klSI + dc(T) - ITI - klTI

klSI + dc(T) - (k + l)ITI
> klSI + (k + l)ITI- (k + l)ITI

klSI == k 3,

this is a contradiction.

Case 3. lSI 2.

In this case, £(S, T) 2. We first prove the following claim.

Claim 1. ITI k + 1.

Proof. If T == 0, then by (1) we have

£(S,T) - 1 tJc(S, T) == klSI lSI £(S, T),

which is a contradiction.

If ITI == 1, then from (1) we obtain

1 £(S, T) - 1 tJc(S, T) == klSI + dc-s(T) - klTI
klSI- klTI 2k - k == k 3,

it is a contradiction.

Hence, ITI 2. In the following we assume that ITI < k. Since ITI 2,
we have

tJc(S, T) klSI + dc-s(T) - klTI
> ITIISI + dc-s(T) - klTI

L(ISI + dc-s(x) - k)
xET
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> L(6(G) - k)
xEr

ITI 2 2 2 .is,T),

which contradicts (1). This completes the proof of Claim 1.

According to Claim 1, T =I- 0. Define

hI == min{dc-s(x) : x E T}.

Choose Xl E T such that dC-S(XI) == hI. Furthermore, if T \ Nr[XI] =I- 0,
we define

h2 == min{ dc-s(x) : x E T \ Nr[XI]}.

Choose X2 E T\Nr[XI] such that dC-S(X2) == h2. Thus, we have 0::; h., ::;
h2 ::; k by the definition of T.

Subcase 3.1. T == Nr[XI].

From Claim 1 and T == Nr[XI], we obtain k 2 hI == dC-S(XI) 2
ITI - 12k. Therefore, hI == k. According to the definition of hI, we have

6C(S, T) klSI + dc-s(T) - klTI
> klSI + hllTI - klTI

klSI + klTI - klTI
klSI 2 lSI 2 c(S, T).

That contradicts (1).

Subcase 3.2. T \ Nr[XI] =I- 0.
It is easy to verify that

n+lISI2 -2- - h2 . (2)

Otherwise, lSI < n!l-h2. That is, ISI+h2 < n!l, then dC(X2) ::; ISI+h2 <
n!l and dC(XI) ::; lSI + hI ::; lSI + h2 < n!l. Since XIX2 tf- E(G), that
would contradict the hypothesis of Theorem 5.

Subcase 3.2.1. h2 == o.
Clearly, hI == o. By (1), (2) and lSI + ITI ::; n, we obtain

c(S, T) - 1 > 6c(S, T) == klSI + dc-s(T) - klTI
> klSI- klTI 2 klSI- k(n - lSI)

2klSI - kn 2 k(n + 1) - kn
k > 2 2 c(S,T).
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This is a contradiction.

Subcase 3.2.2. h2 2: 1.

According to (2), ISI+ITI < n, hI <h2 < k and INT[XI]I < dC-S(XI)+
1 == hI + 1, we get

tJc(S, T) klSI + dc-s(T) - klTI
> klSI + hIINT[XI]1 + h2(ITI-INT[XI]1) - klTI

klSI - (h2 - hl)INT[XI]I- (k - h2)ITI
> klSI- (h2 - hl)(hl + 1) - (k - h2)(n - lSI)

(2k - h2)ISI- (h2 - hl)(hl + 1) - (k - h2)n
n+1

> (2k - h2)(-2- - h2) - (h2 - hl)(hl + 1) - (k - h2)n

2 n 3 2
h2+ (2" - 2k - 2)h2 - li, h2+ hI + hI + k

(hz - 1 _ h1)Z + + - 2k - l)hz + k _
2 4 2 2 4

> 3 2 n 1"4 h2+ (2" - 2k - 1)h2+ k - "4'

that is,

(3)

If k == 3, then n 2: 10. Hence, we have by (3)

3 2 1
tJc(S,T) 2: "4 h2 - 2h2+ 3 - "4 > 1.

In view of the integrity of tJc(S, T), we obtain

tJc(S, T) 2: 2 2: .is,T).

This contradicts (1).

If k 2: 4, then n 2: 4k - 3. Therefore, from (3) we get

3 2 4k - 3 1 3 2 5 1
6c(S, T) 2: "4 h2+ (-2- - 2k - 1)h2+ k - 4 2: 4h2 - 2h2+ 4 - 4 > 1.

According to the integrity of 6c(S, T), we have

tJc(S, T) 2: 2 2: c(S,T).

Which contradicts (1). This completes the proof of Theorem 5.
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Remark. Let us show that the condition max{dc(x),dc(y)} 2: n;l in
Theorem 5 cannot be replaced by max{de(x), de (y)} 2: Let t 2: 2 and
k 2: 3 be two integers. We construct a graph G == ((kt - 2)K1 uK2 ) V kt.K«.
Clearly, J(G) == kt 2: 2k > k + 1, n == IV(G)I == 2kt 2: 4k > 4k - 3 and

n
max{de(x),de(y)} == "2

for each pair of nonadjacent vertices x, y of ((kt - 2)K 1 u ktK1) c G. Let
S == V((kt - 2)K1 U K 2 ) ) V(G) and T == V(ktK1 ) V(G). Then
lSI == kt, ITI == kt and S is not independent. Thus, we get €(S, T) == 2 and

Je(S,T) klSI + de-s(T) - klTI
k 2 t - k 2 t == 0 < 2 == €(S, T).

According to Lemma 2.1, G is not a fractional k-covered graph. In the
above sense, the result in Theorem 5 is best possible.
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