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Edge minimal Hamilton laceable1 bigraphs on 2m vertices have at least 2L(m+ 3 )/6 J 
vertices of degree 2. If a bigraph is edge minimal with respect to Hamilton 
laceability, it is by definition edge critical, meaning the deletion of any edge will 
cause it to no longer be Hamilton laceable. The converse need not be true. The m-
crossed prisms [8] on 4m vertices are edge critical form> 2 but not edge minimal 
since they are cubic. A simple modification of m-crossed prisms forms a family of 
"sausage" bigraphs on 4m + 2 vertices that are also cubic and edge critical. Both 
these families share the unusual property that they have exponentially many 
Hamilton paths between every pair of vertices in different parts. Even so, since the 
bigraphs are edge critical, deleting an arbitrary edge results in at least one pair 
having none. 

1 Introduction: 
The Hamilton laceablity of some families of cubic bigraphs has been investigated 
[ 1] but without the stringent requirement of edge criticality. Since being Hamilton 
laceable is analogous for bipartite graphs to being Hamilton connected for general 
graphs, it is natural to ask whether families of cubic graphs, such as the Cayley 
graphs on dihedral groups, that are Hamilton connected when they are not bipartite 
are Hamilton laceable when they are. They are [2]. In the other direction, edge 
minimality- which implies edge criticality- has been investigated for the related, 
stronger, property of hyper-Hamilton laceability2 [3]. But since the graph property 
is stronger, the minimality results are weaker. None of the results obtained in either 
of these approaches appear applicable to the problem of cubic bigraphs being edge 
critical, so no attempt has been made to reference all papers in either area. The ones 
cited lead to other related work. 

I. A Hamilton path is only possible in a bipartite graph if the parts have the same cardinality( equitable) 
or differ by one (nearly equitable). A bipartite graph G is Hamilton-laceable ifG is equitable and there 
exists a Hamilton path between every vertex in the one part and every vertex in the other or if G is 
nearly equitable and there exists a Hamilton path between every pair of vertices in the larger part. 
2. A Hamilton laceable bigraph G is hyper-Hamilton laceable ifG is equitable and for any vertex v, G-v 
is Hamilton laceable or G is nearly equitable and for any vertex v in the larger part, G-v is Hamilton 
laceable. 
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A fundamental question in the study of Hamilton laceable bigraphs is: 
What is the least number of edges a bigraph must have in order to be Hamilton 
laceable? For nearly equitable bigraphs on 2m+ 1 vertices the answer, E2m+l =3m, 
has been known since the notion of Hamilton laceablity was first introduced [3, 4]. 
For equitable bigraphs the best results known [5] are the bounds 3m- L m/3 J s E2m 

s 3m- L(m+ 3)/6 J. An exhaustive computer testing of small equitable bigraphs for 
Hamilton laceability revealed the Franklin graph on 12 vertices, Figure la, to be 
Hamilton laceable and edge critical. But it is not edge minimal, since it has 18 
edges while there exist a pair of non-isomorphic Hamilton laceable bigraphs on 12 
vertices with only 1 7 edges, Figures 1 b and 1 c, having 106 and 125 Hamilton paths 
respectively. 

a- Franklin graph b c 

Figure 1 

An obvious generalization of the representation of the Franklin graph in 
la leads to an infinite family, the polygonal bigraphs P4m, of cubic bigraphs on 4m 
vertices which are edge critical but not edge minimal form> 2 [7]. This raises the 
natural question of whether there exists a comparable family ofbigraphs on 

4m + 2 vertices that are also cubic and edge critical. 

The constructive characterization of P 4m is: Extend the sides of a regular 
polygon on 2m vertices to define the 4m(m-1)/2 finite points of intersection. 
Circumscribe a centrally symmetric circle large enough that all of the points of 
intersection are in its interior. The 4m points of intersection of the extended sides 
with the circle are the vertices of the polygonal bigraph, P 4m. The edges are the 4m 
arcs of the circle between the vertices and the 2m diagonals defined by the extended 
sides of the defining polygon. P 8 is the edge skeleton of the 3-cube, P12 the Franklin 
graph etc. The P4m are isomorphic to the m-crossed prism graphs [8], shown 
schematically in Figure 2. Given that the P 4m are edge critical, but not edge minimal, 
an obvious place to look for bigraphs on 4m + 2 vertices with similar properties 
would be the polygonal bigraphs, P 4m+2, generated by regular polygons on 2m+ 1 
vertices using the same construction used to generate the P 4m. However, it has been 
shown that no P4m+2 is edge critical [6]. 
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Figure 2 

The solution found was to modify the m-crossed prism graph. Since each 
twisted quadrilateral in Figure 2 contributes four vertices and six edges, the problem 
was to find a way to add two vertices and three edges while preserving Hamilton 
laceability and edge criticality. To do this, replace the two edges linking a pair of 
adjacent twisted quadrilaterals with the H figure on vertices A and B as shown in 
Figure 3. The resulting "sausage" bigraphs, S4m+2, are cubic, Hamilton laceable and 
edge critical. The balance of this paper is devoted to analyzing these bigraphs. 

Figure 3 

2 Essential properties of S4m+2 : 

The positive result, that S4m+2 is Hamilton laceable, is easy to prove. The negative 
result, that S4m+2 is not Hamilton laceable if any edge is deleted, is more difficult. 

It would be possible to directly prove S4m+2 is Hamilton laceable by 
exhibiting a construction for a Hamilton path between all sets of endpoints, but this 
would require treating a large number of sub-cases. A and B are obviously unique 
endpoints, as are the four vertices adjacent to one of them. Less obvious is the need 
to group other endpoints according to their proximity to one of A or B, so the 
number of sub-cases that would have to be treated becomes quite large. Instead we 
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use a simple technique to extend Hamilton paths in S4m+2 to Hamilton paths in 
S4(m+I)+2 which avoids the need to consider any sub-cases. 

Theorem 1: 

S4m+2 is Hamilton laceable. 

Proof: 

A Hamilton path must span the four vertices in each twisted quadrilateral. 
Figure 4 shows the only six ways this is possible if the quadrilateral doesn't host an 
endpoint, Figure 5 the five ways if it hosts only one and Figure 6 the eight ways if 
it hosts both. 

XXX XXX 
a b c d e 

Figure 4 

X xxxx 
a b c d e 

Figure 5 

xxxx 
a b c d 

xxxx 
a' b' c' d' 

Figure 6 

There are obvious symmetries and reflections which could be used to 
reduce the number of figures but there is no reason to do so since only two 
properties of the spanning sets of paths will be used. First, all of the sets, with the 
exception of 5d and 5e, are connected to the twisted quadrilaterals on either side 
with at least one edge. Second, there is exactly one set of spanning sub-paths that 
connect with the same entrant and exit edge(s) on both sides; 4a, 4c and 4d. 
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Associate a binary m-tuple with each Hamilton path in S4m+2 where a 1 
indicates the associated quadrilateral hosts at least one endpoint, and a 0 that it 
hosts none. To extend a Hamilton path in S4m+2 splice a twisted quadrilateral into 
any one of the m-1 pairs of edges connecting adjacent quadrilaterals. Since the 
endpoints are in existing quadrilaterals, if at least one of the connecting edges is in 
the Hamilton path in S4m+2, one of the sub-paths in either 4a, 4c or 4d will span the 
new twisted quadrilateral to produce a Hamilton path in S4(m+I)+2. This is equivalent 
to inserting a 0 between two symbols in the binary m-tuple corresponding to the 
Hamilton path in S4m+2. The only way this extension technique could fail is if the 
adjacent symbols in the binary m-tuple are both 1 and the two sub-paths are either 
5d or 5e back to back so that no edges join the host quadrilaterals which would 
result in the four vertices in the new twisted quadrilateral being isolated. Again, it 
would be possible to treat these exceptional cases directly to show a Hamilton path 
would still exist in S4(m+I)+2, but that would be contrary to the stated objective of 
avoiding having to consider any sub-cases. 

6 a binary m-tuple with at most two 1 's must have at least one pair 
of adjacent O's and hence could have been formed by inserting a 0 into an (m-1)-
tuple. The 5-tuple 01010 shows this need not be the case form< 6. An exhaustive 
backtracking calculation of the Hamilton paths in SIO• sl4• SIS and s22 shows them 
to have 168, 592, 1384 and 5184 Hamilton paths respectively and to all be 
Hamilton laceable. Therefore, S4m+2 is Hamilton laceable for all m. 

Theorem2 

s4m+2 is edge critical. 

Proof 

The method of proof will be the same in all cases; given an edge, identify 
an associated pair of endpoints, x and y, and show there cannot be a Hamilton path 
between them if the edge is deleted. In general there will be many such vertex pairs 
associated with each edge. The closest pair will be chosen to make the proof 
arguments be as local as possible. 

There are four classes of edges to be considered. 

1. edge A-B 

2. an edge incident on only one of A orB 

3. an edge on a quadrilateral 

4. an edge not on a quadrilateral 
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Case 1 

1 II 4 

Figure 7 

In order for A to be in the Hamilton path edges 1-A-2 must be in the path. If 
endpoint xis connected to 1 or 2 the path is forced to close prematurely (unless 
S4m+z is K3,3); x-1-A-2-3-y or x-2-A-1-3-y. If the path begins with x-4, y-3 is forced. 
Neither of the paths y-3-1-A-2 nor y-3-2-A-1 can be continued. 

Therefore there cannot be a Hamilton path between x andy if edge A-B is deleted 
andm> 1. 

Case2 

Figure 8 

Choose edge a-A as representative ofthis class. Edges x-A-1 and y-a-2 are forced 
to include A and a respectively in the Hamilton path. The only possible continuation 
from vertex 1 is 1-2 which closes the path prematurely (unless S4m+z is K3,3). 

Therefore, for all m > 1 the bigraph resulting from deleting any edge incident on 
either A or B is not Hamilton laceable. 

Case 3 

a b 

Figure 9 

Figure 9 makes it appear there are two cases, but they are the result of a 
simple half twist of S4m+2: keep vertices y and 1 fixed, and interchange vertices 2 
and 3, and the balance ofS4m+z· This operation will figure later in counting Hamilton 
paths, but all that matters here is that there is essentially only one construction 
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involved. Since m > I there is another Q on one side or the other of the Q in which 
the edge is located. Choose endpoints x and y as shown in Figure 8a. In order for 
vertices 1 and 2 to be in a Hamilton path, the ends must start with x-1-3 and y-2, but 
these partial paths are directed into the same end ofS4m+z with the only connection 
back to the isolated vertices on the other side being edge A-B. Therefore there is no 
way for the two partial paths on x andy to join and to include the isolated vertices. 

Case4 

Figure 10 

The only way 1 can be in a Hamilton path is for the path to start x-1-4. 
Similarly y-2-3 is forced. But vertices 5 and 6 are then either isolated or in a non-
spanning path on eight vertices. Either way, the sub graph resulting from deleting an 
edge not on a quadrilateral is not Hamilton laceable. 

3 Enumeration of Hamilton paths in S4m+2 : 

Enumerating Hamilton paths normally involves an exponentially difficult 
backtracking construction of maximal length paths on each endpoint vertex. The 
unique structure of S4m+z however permits the direct computation of Hamilton paths 
with no need for backtracking. The key observation is that each set of spanning 
paths in Figure 4 has a unique companion related by a half twist of the host 
quadrilateral; a transformation which leaves the twisted quadrilateral unchanged but 
permutes the spanning path(s). 4a and 4b are such a pair irrespective of the direction 
the Hamilton path is being traversed while 4c or 4d is paired with one of 4e or 4f, 
depending on the direction of the traverse. 

Lemma: 

A run ofk twisted quadrilaterals, none of which host an endpoint, has 2k-I: 

or 

Proof: 

i. spanning paths between each pair of endpoints on the ends of the run 

ii. spanning pairs of paths that either enter and exit on the same cycles 
or else interchange cycles. 

By induction since the statements hold for a single twisted quadrilateral. 

Given the results in the lemma, enumerating Hamilton paths in S4m+z 

involves little more than identifying the runs of twisted quadrilaterals associated 
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with endpoint pairs in Figure 11. 

a b 

-\KX··rl/-
a' b' 

Figure 11 

Theorem 3: 

S4m+z has a total of2m+ \2m2 + 6m + 1) Hamilton paths, partitioned so uniformly over 
the (2m+ 1 )2 pairs of vertices from different parts that every pair has exponentially 
many Hamilton paths between them. 

Proof: 

The number of Hamilton paths between the various classes of endpoint pairs will 
be computed first and the weighted sum formed to calculate the total. 

There are four obviously distinct classes of adjacent vertices; A and B, A 
and a or a' orB and b orb', endpoints of an edge in a quadrilateral and endpoints 
of an edge not in a quadrilateral. There is no reason to expect that all adjacent pairs 
of vertices should have the same number of Hamilton paths between them, but 
surprisingly they do. There are exactly 2m+ I Hamilton paths between every pair of 
adjacent vertices. 

When both endpoints are in quadrilaterals, due to parity the host 
quadrilaterals are either both between the endpoints (distal), or neither is 
(proximate). As might be expected these classifications have a significant impact 
on the number of Hamilton paths between the endpoints. In the case of proximate 
endpoints it makes a difference whether there is a quadrilateral between the host 
quadrilaterals or not. Ifthere is none, the null-proximate case, all of the non-host 
quadrilaterals appear in runs and hence contribute a factor of 2 to the 2m Hamilton 
paths. In the proximate case, one of the sets of paths through the quadrilaterals 
between the host quadrilaterals is forced and hence cannot contribute a factor of2, 
so the number of Hamilton paths is only 2m-I in this case. 

Therefore there are five classes of endpoint pairs to be considered; 
adjacent, A orB and a non-adjacent vertex, null-proximate pairs, proximate pairs 
and distal pairs. 

Case 1. adjacent endpoints 

i. The endpoints are A and B 

All m of the twisted quadrilaterals are in the run. By the lemma there are 2m-I 
spanning paths between any pair of endpoints on the ends of the run. There are four 
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ways A and B can connect to endpoints on the run, so there are a total of 2m+ I 
Hamilton paths between A and B. 

ii. One endpoint is from the set (A, B), the other from the set (a, a', b, b') 

Choose A and a as representative of this set of endpoints. There are two 
possibilities: either edge A-B is in the Hamilton path or it isn't. If it is, either edge 
b-B or else b'-B must be in the path. But by the lemma there are 2m-I spanning paths 
between a and b and between a and b'. Therefore there are 2m Hamilton paths 
between A and a that use edge A-B. If edge A-B is not in the Hamilton path, edge 
a'-A must be. The lemma says there are 2m spanning paths though the run with 
vertex B appended, i.e. there are 2m+I Hamilton paths between the endpoints for 
each of these four sets of endpoint pairs. 

iii. The endpoints are on the same edge in a quadrilateral 

There are four ways the host quadrilateral can be connected to the run of k 
quadrilaterals on one side and the run ofm- k- 1 on the other, Figure 12. 

xxxx 
a b c d 

Figure 12 

12a doesn't use edge A-B, the other three do. Each of these define 2m-I Hamilton 
paths since the lemma constructions are multiplicative. Therefore there are 2m+I 
Hamilton paths between the endpoints of any edge in a quadrilateral. 

iv. The endpoints are on an edge not in a quadrilateral 

In this case there are two ways the host quadrilaterals can be connected to the run 
ofk quadrilaterals on one side and the run ofm- k on the other, Figure 13. 

XX XX 
I II 

Figure 13 

13a doesn't use edge A-B and 13 b does. In 13a the lemma says there will be 2k 
spanning paths between A and the endpoint on the side A is on and 2m-k between B 
and the other endpoint. Since the path multiplicities are multiplicative this says 
there are 2m Hamilton paths that use edge A-B, By the same argument used earlier 
for the case in which edge A-B wasn't used, there are also 2m Hamilton paths that 
do not use edge A-B for a total of2m+I in this case as well. 

Therefore there are 2m+ I Hamilton paths between every pair of adjacent 
vertices in s4m+2· 
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Case 2 One endpoint is from the set (A, B), say A, and the other a non-adjacent 
vertex, x. 

By parity, xis on the side of the host quadrilateral closest to A. This means the path 
originating on x cannot span the vertices in the host quadrilateral since if it did it 
would exit on the side away from A which would then only be reachable by edge 
A-B. But x is not adjacent to A so any vertices between A and the quadrilateral 
containing x would be isolated. The only alternative is the subgraph shown in 
Figure 14 in which all m of the quadrilaterals have two choices for a spanning set 
of paths. Therefore there are 2m Hamilton paths between endpoint pairs in this case. 

Case 3 The endpoints are a null-proximate pair. 

By definition there are no quadrilaterals between the pair of host quadrilaterals 
which divide them quadrilaterals into a run ofk on one side and m- k on the other. 
The lemma says that the one run will contribute 2k spanning paths and the other 2m-k, 
and as already remarked these are multiplicative so there are 2m Hamilton paths 
between the endpoints in this case. 

Case 4 The endpoints are a proximate pair 

In this case there are k, k 1, quadrilaterals between the pair of host quadrilaterals. 
The endpoints define a pair of vertices on the ends of the run, and the lemma says 
there will be only 2k-I spanning paths between them. By the same arguments used 
in the previous case there will be 2m-k spanning paths through the other 
quadrilaterals, or 2m- I Hamilton paths between the endpoints. 

Case 5 The endpoints are a distal pair 

Unlike the previous cases in which there was a single starter for Hamilton paths, in 
this case there are three, Figure 14. 

y ... x X .. X X·X 
a b c 

Figure 14 

The analysis is complicated by the fact that the remammg m - 2 twisted 
quadrilaterals can be partitioned into three runs; k1 to the left of the run containing 
the endpoints, k2 to the right and m- k1 - k2 -2 between the host quadrilaterals. For 
each choice of distal endpoints in the host quadrilaterals there are two sets of 
spanning paths, corresponding to the half twist of the region between the 
quadrilaterals that leaves the endpoints fixed. Therefore the total number of 
Hamilton paths for each starter is the contribution of 2m-2 paths from the three runs 
times 2 for the contribution from the host pair. Since there are three inequivalent 
starters, this says there are 3x2m-I Hamilton paths between each pair of distal 
endpoints. 
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Using the definitions of the five classes of endpoint pairs and referring to 
Figure 11 it is easy to see there are 3(2m + 1) adjacent pairs, 2m(m- 1) distal pairs, 
2(m- 1) null-proximate pairs, 2(m- l)(m- 2) proximate pairs and 4(m- 1) A orB 
to non-adjacent vertex pairs. Forming the weighted sum yields the result that S4m+2 

has 2m+1(2m2 + 6m + 1) Hamilton paths in total. 

Table 1 collects the enumeration results proven here for Hamilton paths 
in s4m+2 (sausage bigraphs) and in [7] form-crossed prisms (nee polygonal bigraphs 
P4J. 

Pair placement 

adjacent 

null-proximate 

proximate 

distal 

AorBto 
non-adjacent 

Total 

m-crossed prism 
IVI=4m 

3x2m-2 

3 X 2m-2 

2'"(3m2 +3m} 

Table 1 

Sausage bigraph 
IV, =4m+2 

2' .. ' 

The significant thing to note in the table is that all entries double with each increase 
mm. 

4 Conclusion: 

There exist cubic, edge critical, Hamilton laceable bigraphs on every even 
cardinality set of ten or more vertices. The constructions used to prove this all have 
exponentially many Hamilton paths distributed so uniformly that every pair of 
vertices in different parts have exponentially many Hamilton paths connecting them. 
Even so, since the bigraphs are edge critical, deleting an arbitrary edge results in at 
least one pair having none. 

5 Open question: 

The quantity 3m, where m = LIVI/4j, appears over and over in deriving bounds for 
the minimal number of edges a bigraph must have to be Hamilton laceable, or here 
in constructing cubic, edge critical, bigraphs. It could be this is simply an artifact 
of the constructions used to realize the bounds or to achieve criticality, but it could 
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also be that 3m is a natural bound related in some deeper way to the bigraph 
property ofHamilton laceability. A deciding question is: Do there exist edge critical 
Hamilton laceable equitable bigraphs with more than 3m edges? 

While a cubic graph on 2m vertices has 3m edges, the open question is not 
whether a critical Hamilton laceable equitable bigraph must be cubic since it is easy 
to construct such bigraphs with vertices of degree four, offset by an equal number 
vertices of degree two; Figure 15. The open question is whether there exists such 
a bigraph on 2m vertices with more than 3m edges. 

Figure 15 
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