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Abstract: A vertex subset S of a digraph D == (V, A) is called an out-dominating
(resp., in-dominating) set of D if every vertex in V - S is adjacent from (re-
sp., to) some vertex in S. The out-domination (resp., in-domination) number
of D, denoted by 'Y+(D) (resp., 'Y-(D)), is the minimum cardinality of an out-
dominating (resp., in-dominating) set of D. In 1999, Chartrand et al. proved
that 'Y+(D) + 'Y- (D) 4n/3 for every digraph D of order n with no isolated
vertices. In this paper, we determine the values of 'Y+(D) + 'Y- (D) for rooted
trees and connected contrafunctional digraphs D, based on which we show that
'Y+(D)+'Y- (D) (2k+2)n/(2k+ 1) for every digraph D of order n with minimum
out-degree or in-degree no less than 1, where 2k + 1 is the length of a shortest
odd directed cycle in D. Our result partially improves the result of Chartrand et
al. In particular, if D contains no odd directed cycles, then 'Y+(D) + 'Y- (D) n.

Keywords: Out-domination number; In-domination number; Rooted tree; Con-
trafunctional digraph

1 Introduction and notations

Now domination has become one of the major areas in graph theory. The rea-
son for the steady and rapid growth of this area may be the diversity of its
applications to both theoretical and real-world problems, such as facility location
problems [5]. Various types of domination problems in undirected graphs, such
as total domination [6], k-tuple domination [9], connected domination [3], perfect
dornination [8], and rainbow domination [12] have been widely studied. The con-
cept of domination in undirected graphs is naturally extended to directed graphs
(digraphs). In fact, domination in digraphs comes up more naturally in modeling
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real world problems. Compared to undirected graphs, domination in digraphs
has not yet gained the same amount of attention, although it has several useful
applications as well. For example, domination in digraphs has been used in the
study of the routing problems in networks [13] and answering skyline query in
database [7]. Domination in digraphs is well studied [1, 2, 10, 11].

Throughout this paper, D == (V, A) denotes a finite digraph with neither loops
nor multiple arcs (but pairs of opposite arcs are allowed). For two vertices u, v E
V(D), we use uv to denote the arc with direction from u to v, that is, u is adjacent
to v, or equivalently, v is adjacent from u, For u E V(D), the out-neighborhood
and in-neighborhood ofu are NiJ(u) == {v E V(D) : uv E A(D)} and ND(u) ==
{v E V(D) : vu E A(D)}, respectively. The closed out-neighborhood and closed
in-neighborhood of u are NiJ[u] == {u} U N"jy(u) and N;[u] == {u} U N;(u),
respectively. The out-degree and in-degree of a vertex u of D are defined by
db (u) == INiJ (u) I and d; (u) == IN; (u) I, respectively. The minimum out-degree
and the minimum in-degree among the vertices of D are denoted by 8+(D) and
8-(D), respectively. For two vertices u and v of D, the distance dD(u,v) from
u to v is the length of a shortest u-v directed path in D. If D contains no u-v
directed path, then dD(U, v) == 00. For a subdigraph H of D and u E V(D), the
distance from H to u in D is dD(H, u) == min{dv (v, u) : v E V(H)}.

Given two vertices u and v of D, we say u out-dominates v (or v in-dominates
u) if u == v or uv E A(D). A subset S of V(D) is called an out-dominating (resp.,
in-dominating) set, abbreviated as O'D-set (resp., ID-set), of D if every vertex
in V(D) - S is is out-dominated (resp., in-dominated) by at least a vertex in S.
The out-domination (resp., in-domination) number of a digraph D, denoted by
"'(+ (D) (resp., "'(- (D)), is the minimum cardinality of an O'D-set (resp., ID-set) of
D. An ODvset (resp., ID-set) of D of cardinality "'(+(D) (resp., "'(-(D)) is called a
"'(+(D)-set (resp., "'(-(D)-set). Clearly a vertex with in-degree (resp., out-degree)
o belongs to every O'D-set (resp., ID-set).

If the underlying graph of a digraph D is connected, then we say that D is
connected. A rooted tree is a connected digraph with a vertex of in-degree 0, called
the root, such that every vertex different from the root has in-degree 1. A digraph
D is contrafunctional if each vertex of D has in-degree 1. The converse D' of a
digraph D is the digraph obtained from D by reversing the orientation of each
arc of D. Clearly "'(+(D) == "'(-(D/) and "'(-(D) == "'(+(D'). For two subdigraphs
D I and D 2 of a digraph D with V(D I ) U V(D2) == V(D), it is easy to see that
"'( + ( D) ::; "'( + (D 1) + "'( + (D 2) and "'( - (D) ::; "'( - (D 1) + "'( - (D 2) .

2 Main results

We begin with the following two lemmas, which are the key points for our further
discussion.

Lemma 2.1. Let y be a vertex of a digraph D such that d;(y) == l,db(Y) 2: 1
and d;(x) == l,db(x) == 0 for each x E N"jy(y) (see Figure 1). Then
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(1) There exists a "(+(D)-set S+ such that y E S+;
(2) There exists a "(- (D) -set S- such that y rf:. S- .

Figure 1: A digraph D and its local structure at a vertex y.

Proof. (1) Let S+ be a ,,(+(D)-set. If y rf. S+, then NJj(y) S+ since y is the
unique vertex adjacent to each vertex in NJj(y). Note that y out-dominates each
vertex in NJj(y). Therefore, (S+ - NJj(y)) U {y} is an OD-set of D. Moreover,
I(S+ - Nfj(y)) U {y}1 ::; IS+I. This implies that (S+ - Nfj(y)) U {y} is also a
"(+(D)-set.

(2) Let S- be a "(- (D)-set. Clearly, Njj (y) S- since each vertex in Njj (y)
has out-degree O. Therefore, if y E S-, then (S- - {y}) U {z} is an ID-set of D
since each vertex in Nfj(y) in-dominates y, where z is the unique vertex adjacent
to y. Moreover, I(S- - {y}) U {z}1 ::; IS-I. This implies that (S- - {y}) U {z} is
also a -: (D)-set. D

Lemma 2.2. Let D and y be defined as in Lemma 2.1. Then
(1) IfS+ is a "(+(D)-set withy E S+, then S+-{y} is a "(+(Dy)-set, where and

herein after, D; == D - NJj [y];
(2) If S- is a "(-(D)-set with y rf:. S-, then S- - Nfj(y) is a "(-(Dy)-set.

Proof. (1) Let S+ be a "(+(D)-set with y E S+. Since S+ is minimum and y E S+,
Njj(y)nS+ == 0. Moreover, S+ - {y} is an O'D-set of Dy since y out-dominates
no vertex in ti; Therefore, IS+(Dy)1 ::;1 S+I-1, where S+(Dy) is a ,,(+(Dy)-set.
On the other hand, it is easy to see that S+(Dy ) U {y} is an aD-set of D and
hence IS+I ::; IS+(Dy)1 + 1. As a result, we have IS+(Dy)1 == IS+I - 1. Thus, if
S+ is a "(+(D)-set with y E S+, then S+ - {y} is a "(+(D y)-set.

(2) Let S- be a "(- (D)-set with y rf:. S-. Since each vertex in Nfj(y) has
out-degree 0, Nfj (y) S-. Moreover, S- - Nfj (y) is an ID-set of o, since
each vertex in NJj (y) in-dominates no vertex in o; Therefore, IS- (D y) I ::;
IS-I-INt(y)l, where S-(Dy) is a "(-(Dy)-set. On the other hand, it is easy to
see that S- (D y ) U »: (y) is an ID-set of D and hence IS-I ::;1 S- (D y ) 1+ INt (y) I.
As a result, we have IS-(Dy)1 == IS-I-INfj(y)l. Thus, if S- is a "(-(D)-set with
y rf:. S-, then S- - Nt (y) is a "(- (Dy)-set. D

We now consider a rooted tree T of order n with root r. Let x be a vertex of
T such that the distance from r to x, i.e., dT(r,x), is maximum, and let y be the
unique vertex adjacent to x. We note that Ty == T - Ni [y] is still a rooted tree
with root r or empty. This means that we can take a sequence of such operations
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on T until the resulting subdigraph is empty or the isolated vertex r. If the
former happens, then we call T the type I. Otherwise, we call T the type II.

Theorem 2.3. Let T be a rooted tree of order n. Then

if T is of type I,
if T is of type II.

Proof. We prove by induction on n. If n == 1, then T is an isolated vertex and
therefore, is of type II. On the other hand, ,,+ (T) + ,,- (T) == 2 == n + 1. If n == 2,
then T is a directed path of order two and therefore, is of type I. On the other
hand, ,,+ (T) + ,,- (T) == 2 == n. Hence we may assume that n 3. Let x be a
vertex of T such that dT(r, x) is maximum, where r is the root of T, and let y be
the unique vertex adjacent to x.

If dT(r, x) == 1, then T is of type I. On the other hand, it is easy to verify that
,,+(T) +,,-(T) == l{r}1 + IN;(r)1 == n. We now assume that dT(r,x) 2: 2. Let
S+ and S- be a ,,+ (T)-set and a ,,- (T)-set, respectively. Note that y satisfies
the two conditions in Lemma 2.1. So by Lemma 2.1, we may choose S+ and
S- to be such that y E S+ and y tf. S-. Then by Lemma 2.2, S+ - {y} and
S- - N;(y) are a ,,+(Ty)-set and a ,,- (Ty)-set, respectively. On the other hand,
we notice that T is of type i (i E {I, II}) if and only if Ty is of type i. Thus, by
the induction hypothesis, if T is of type I, then

,,+(T) + ,,-(T) == IS+I + IS-'

== IS+ - {y}1 + l{y}1 + IS- - N;j(y)1 + IN;j(y)1

== ,,+(Ty) + ,,-(Ty) + IN;j(y)1 + 1 == IV(Ty)1 + IN;(y)1 + 1 == n.

The discussion for the case when T is of type II is analogous, which completes
our proof. 0

In [4], Harary et al. showed that every connected contrafunctional digraph
has a unique directed cycle and the removal of anyone arc of the directed cycle
results in a rooted tree. The simplest connected contrafunctional digraph of order
n is the directed cycle of length n, for which we have the following result.

+(0+) -(0+) == { n,
" n +" n n + 1,

if n is even,
if n is odd.

(1)

Let D be a connected contrafunctional digraph. We define the height of D,
denoted by h(D), to be the maximum distance from its unique directed cycle C
to all vertices of D, i.e., h(D) == max{dD(C,V) : v E V(D)}. In particular, the
height of a directed cycle is exactly equal to O.

Lemma 2.4. Let D be a connected contrafunctional digraph of order n. If
h(D) == 1, then
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Proof. Without loss of generality, we may assume that C is the unique directed
cycle of D, U,V E V(C), x t/:. V(C) and vu,ux E A(D). Let T == D-vu. It is clear
that T is a rooted tree with the root U of order n [4]. Further, one can verify that
T is a rooted tree of type I. So by Theorem 2.3, 'r+(T) +'r-(T) == IV(T)I == n.
Since T is a spanning subdigraph of D, we have

We now prove that 'r+(D) +'r-(D) 2:: n. Let S+ and S- be a 'r+(D)-set and
a 'r- (D)-set, respectively, and let

The assertion holds directly if S is empty. Now suppose that S == {Ui : 1 i s},
where s 2:: 1. Since ii, t/:. S- for each i E {I, 2, ... ,s}, there must be at least
one vertex Vi E Nfj (Ui) such that Vi in-dominates uc, that is, Vi E S-. On the
other hand, since u; t/:. S+ and u.: is the unique vertex adjacent to the vertices
in Nfj(Ui) for each i E {1,2,'" ,s}, we must have Vi E N"iJ(Ui) S+. As a
result, Vi E s+ n S- for each i E {I, 2, ... ,s}. Recalling that each vertex in
D has in-degree 1, we have Vi =1= Vj for 1 i < j s (for otherwise, both u.;
and Uj are adjacent to Vi, a contradiction). The above argument means that
lSI < IS+ n S-I. Thus,

'r+(D) +'r-(D) == IS+I + IS-I == IS+ US-I + IS+ nS-1

== IV(D)I-I SI + IS+ n S-I 2:: n,

which completes the proof.

We now consider a connected contrafunctional digraph D with its unique
directed cycle r; Let x be a vertex of D such that x) == h(D) 2:: 2 and
let y be the unique vertex adjacent to x. We note that D y is still a connected
contrafunctional subdigraph with the unique directed cycle e; Similar to the
discussion for a rooted tree, we can take a sequence of such operations on D until
the resulting subdigraph is the directed cycle t: or a connected contrafunctional
digraph of height 1. If the former happens and k is odd, then we call D the type
II. Otherwise, we call D the type I.

Theorem 2.5. Let D be a connected contrafunctional digraph of order n. Then

if D is of type I,
if D is of type II.

--=+
Proof. Let C k be the unique directed cycle of D. We fix k and proceed by
induction on n. If n == k is even (resp., odd), then D is of type I (resp., type II).
On the other hand, by (1), we have 'r+(D) +'r-(D) == n (resp., n+ 1). Hence we

--=-t
may assume that n 2:: k+ 1. Let x E V(D) - V(Ck) such that dD(Ck,X) == h(D)
and let y be the unique vertex adj acent to x.

335



--=-+ .
If dD(Ck,X) == 1, then D IS of type 1. On the other hand, by Lemma 2.4,

--=-+'"'(+(D) + '"'(-(D) == n. We now assume that dD(Ck,X) 2. Let S+ and S-
be a '"'(+ (D)-set and a '"'(- (D)-set, respectively. Noticing that y satisfies the two
conditions in Lemma 2.1, we may choose S+ and S- to be such that y E S+
and y rJ. S-. Then by Lemma 2.2, S+ - {y} and S- - Nfj(y) are a '"'(+(Dy)-set
and a '"'(- (Dy)-set, respectively. On the other hand, we notice that D is of type
i (i E {I, II}) if and only if Dy is of type i. Thus, by the induction hypothesis, if
D is of type I, then

'"'(+(D) + '"'(-(D) == IS+/ + IS-/
== IS+ - {y}1 + l{y}1 + 18- - Nfj(y)1 + INfj(y)1

== '"'(+(Dy) + '"'(-(D y) + + 1 == IV(Dy)1+ + 1 == n.

The discussion for the case when D is of type II is analogous, which completes
our proof. 0

Using Theorem 2.5, we can derive the following result.

Theorem 2.6. Let D be a digraph of order n with 8+(D) 2:: 1 or 8-(D) 2:: 1.
Then

+(D) -(D)<2k+2 n'"'( + '"'( - 2k + 1 '

where 2k + 1 is the length of a shortest odd directed cycle in D. In particular, if
D contains no odd directed cycles, then

Proof. Assume 8- (D) 2:: 1. We choose an arbitrary incoming arc of x for each
vertex x E V(D). Then all such arcs induce a spanning subdigraph H of D
consisting of some connected components, say HI, H 2, ... .Hi, Moreover, Hi
(i E {I, 2, ... ,l}) is a connected contrafunctional digraph since each vertex in
Hi has in-degree 1. Note that the length of a shortest odd directed cycle in D is
2k+ 1. Hence if IV(Hi)l:S 2k for some i E {1,2,'" ,l}, then the length of the
unique directed cycle of Hi is even and hence Hi is of type I. So by Theorem 2.5,

If IV(Hi)1 2k + 1 for some i E {I, 2,' .. ,l}, then again by Theorem 2.5, we
have

Therefore,

l

'"'(+(D) + '"'(-(D) :S '"'(+(H) + '"'(-(H) == L ['"'(+(Hi) + '"'(-(Hi)]
i=l

l

< 2k + 2 '" IV(H.)I == 2k + 2n .
- 2k + 1 Z:: 't 2k + 1

i=l
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In particular, if D contains no odd directed cycles, then for each i E {I, 2, ... ,l},
the length of the unique directed cycle of Hi is even and hence Hi is a connect-
ed contrafunctional digraph of type I. So by Theorem 2.5, we have +

== IV(Hi)1 for each i E {I, 2,'" ,l}. Therefore,

l l

+ :s; L + == L IV(Hi)1 == n.
i=l i=l

The discussion for the case when 8+(D) 2 1 is analogous, which completes
our proof. D
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