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Abstract: A k-king in a digraph D is a vertex which can reach every other
vertex by a directed path of length at most k. Every tournament with no
vertex of in-degree zero has at least three 2-kings. In this paper, we present
the structure of tournaments which have exactly three 2-kings and prove
that every strong tournament, containing at least k + 2 vertices with k£ > 3,
has at least k + 1 k-kings.
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1 Terminology and introduction

We only consider finite digraphs without loops and multiple arcs. Let D
be a digraph with vertex set V(D) and arc set A(D). For any z,y € V(D),
we will also write x — y if 2y € A(D). For a vertex z in D, its out-
neighborhood N*(z) = {y € V(D) : zy € A(D)} and its in-neighborhood
N~ (z) ={y € V(D) : yz € A(D)}. For disjoint subsets X and Y of V (D),
X — Y means that every vertex of X dominates every vertex of Y. We say
that X strictly dominates Y, if X — Y and there is no arc from Y to X.
For distinct vertices z and y, the distance d(z,y) is the length of a shortest
directed path from x to y. For any z € V(D) and S C V(D), define
d(z,S) = min{d(z,s) : s € §}. For § C V(D), we denote by D[S] the
subdigraph of D induced by the vertex set S. A digraph D is semicomplete
if there is at least one arc between any pair of distinct vertices of D. A
tournament is a semicomplete digraph with no cycle of length 2.

A k-king in a digraph D is a vertex xz which can reach every other ver-
tex by a directed path of length at most k, that is, d(z,y) < k, for any
y € V(D) — z. In a number of papers (see, [1-9]), kings were investigated.
Observe that every tournament has a 2-king. In fact, the vertex of max-
imum out-degree is a 2-king. In [5], Moon proved that every tournament
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with no vertex of in-degree zero has at least three 2-kings. It seems quite
natural to ask how many k-kings there can be in the tournament with no
vertex of in-degree zero. To the knowledge of the authors this problem has
not previously been addressed in the literature. If a tournament D is not
strong, then every vertex of the unique initial strong component D’ strictly
dominates every vertex outside of D’. Hence the number of k-kings in D’
is the number of k-kings in D. Thus we only need to study the problem in
a strong tournament rather than a tournament with no vertex of in-degree
zero. In Section 2, we prove that every strong tournament, containing at
least k + 2 vertices with k > 3, has at least k£ + 1 k-kings and present the
structure of tournaments which have exactly three 2-kings. For concepts
not defined here we refer the reader to [2].

2 Main results

We begin with the following lemma.

Lemma 2.1 [4]. Let {z},Uo,Us,...,Us be disjoint sets of vertices in
a digraph D. Let also d(z,Up) = t and U4y C NT(U;) for every i =
0,1,...,s—1. Then d(z,Us) <t +s.

Observe that every tournament has a 2-king. In fact, the vertex of
maximum out-degree is a 2-king. Furthermore, if a tournament D has a
vertex of in-degree zero, then this vertex of in-degree zero is the only 2-king
in D. In [5], Moon proved the following.

Theorem 2.2 [5]. Every tournament with no vertex of in-degree zero
has at least three 2-kings.

Next, we consider the k-kings of strong tournaments with k£ > 3.

Theorem 2.3. If D = (V(D), A(D)) is a strong tournament, contain-
ing at least k + 2 vertices with k > 3, then there are at least k + 1 k-kings
in D. Furthermore, if there are exactly k+1 k-kings in D, then there is a
path P = pop: ... pk, such that d(po, px) = k, po,p1,- ..,k are exactly k+1
k-kings and {p1,p2,...,px} = V(D) = V(P).

Proof. Let X denote the set of all k-kings in D and let Y = V(D) — X.
Clearly our theorem is true if Y = @), so we may assume that Y is not empty;
let w € Y be arbitrary. Now define W; as follows: W; = {v € V(D) :
d(w,v) =i} for all i = 0,1,...,m, where m = max{d(w,v) : v € V(D)}.
AsweY,m > k+1 > 4. By the definition of the set W;, we observe that
W; - WoUW U---UW,;_g, for all 2 < i < m and W;;; C Nt (W;) for all
0 <i<m-—1. We first prove two claims.

Claim A. For any x € W;, ifi > 2, then d(z, WoUW U-- - UW;_;) < 2
and d(z, W;) < 3;if i =1 and N*(z) N W, # @, then d(z, Wo U W7) < 3.

If i > 2, then, by W; - WoUW  U---UW,_5 and W;4; C Nt (W;)
with 0 < j <i—1, we have d(z, WoUW  U---UW,;_;) <2 and d(z, W;) <
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3. Suppose i = 1 and let v € N*(z) N W,. By the above argument,
d(v, Wo U Wj) <2 and so d(z, Wo UW;) < d(z,v) +d(v, Wo UW;) < 3.

Claim B. For any y € W;, 1 <¢ < m — 1, then either (i) or (ii) below
holds:

(i) For every z € W4, there is a (w, z)-path in D — y.

(i) d(y, Wiy1) < 3.

Assume that neither (i) nor (i) holds. This implies that there exist
vertices z; and zg in W4, such that there is no (w, z1)-path in D — y and
there is no (y, z3)-path of length at most 3 in D. Let P = pgp; ... pi+1 be
a shortest path from w to z; in D and let R = ror;...7r;41 be a shortest
path from w to 29 in D. Clearly y = p; — z1 and y does not dominate
zy, which implies that z; # 25 and r; # y. If z1 — 7, then yz;7r;22 is a
(y, z2)-path of length 3 and if r; — 2z, then rory... 721 is a (w, 21)-path
in D — y, a contradiction. The proof of Claim B is complete.

We now prove the theorem by induction on |V(D)|. If |V(D)| = k + 2,
then, by Y # 0, there is a path pop; ...pk+1 in D such that d(po, pr+1) =
k 4+ 1. Observe that p;ps . ..pk+1 is the desired path.

Now assume that |V(D)| > k + 3 and that the theorem holds for all
smaller strong tournaments with at least k + 2 vertices. We consider the
following two cases.

Case 1. There exists a vertex y € Y NW,;, 1 <1 < m —1, such that (i)
of Claim B holds.

We first prove that, for every ¢ € V(D) — vy, there is a (w, g¢)-path in
D —y, that is, w can reach every vertex of V(D) —yin D —y. Let g € W;
be arbitrary and let P = pop; ... p; be a shortest path from w to g in D. If
J <1, then clearly y ¢ V(P) and so we are done. If j > i+ 1, then by (i) of
Claim B, there is a (w, p;+1)-path in D —y, which together with p;12...p;
forms a (w, p;)-path in D —y.

Let u € W, be arbitrary and let R = ror; ...r; be a shortest path from
wtouin D—y. Asl>m > k+ 1 > 4, by the minimality of R, r; — 79
and so (D — y)[V(R)] is strong. Let Q1,Q>,...,Qs(s > 1) be an acyclic
ordering of the strong components of D —y. As w can reach every vertex of
V(D) —y in D —y, the vertex w belongs to an initial strong component of
D —vy, say, Q;. Again as D —y is also a tournament, Q; is the unique initial
strong component of D —y. Since (D — y)[V(R)] is strong and w € V(R),
we have V(R) C V(Q1). Hence Q; has at least k + 2 vertices.

Now we claim that every k-king in @), is also a k-king in D. Let z be
a k-king in Q; and let z € V(D) — z be arbitrary. If z € V(Q;), then,
by the choice of z, d(z,2) < k. If z € V(Q:) for t > 2, then z — 2z
and so d(z,z) < k. Suppose z = y and d(z,y) > k. It follows from the
above argument that d(z, V(D) — y) < k. Therefore, d(z,y) = k + 1. Let

Wz(l') — {U c V(D) : d(l‘,v) = 2}, 7 = 0,1,,k+1 AS ngj-)l =Yy and
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k+1 >4, by Claim A, y is a 3-king and so y is a k-king, a contradiction
to the fact y € Y. Therefore, the claim is true.

Using the induction hypothesis for @1, we obtain that there are at
least k + 1 k-kings in @; and so there are at least £ + 1 k-kings in D.
If there are precisely & + 1 k-kings in D, then there are precisely k& + 1
k-kings in @i, and, thus, there is a path P = pgp;...px in @i, which is
a shortest possible (po, pr)-path in Q; such that {po,p1,...,px} = X and
{p1,p2,---,0c} = V(Q1) — V(P). If there is no arc from y to a vertex
in {p1,p2,...,Px}, then clearly {p1,p2,...,pe} — V(D) — V(P) and we
are done. So assume that there is an arc yp,, where 1 < s < k. We will
show that y is another k-king in D and, thus, obtain a contradiction to our
assumption on the existence of the arc yp;.

By d(ps, V(D) — (V(@Q1) U{y})) = 1 and y — p,, we have d(y, V(D) —
V(Q1)) <2. Let 2 € V(Q1) — V(P). As {p1,p2,...,0c} = V(Q1) — V(P),
we have p, — 2. So d(y,z) < 2. To demonstrate that y is a k-king,
it is now sufficient to prove that d(y,p;) < k for every j € {0,1,...,k}.
Suppose s < k. For j > s, d(y,p;) < d(y,ps) +d(ps,pj) S 1+j—s <
1+k—-1<k For0<j<s, pjis dominated by either p, or ps41 as
P is a shortest (po, px)-path, thus, d(y,p;) < 3. Now suppose s = k. For
j€{0,1,...,k — 2}, since px — pj, d(y,p;) < 2. As prpr—2pk—1 is a path
of length 2, d(y, pk—1) < 3 < k. Hence, d(y, {po,p1,---,Px} < k.

Case 2. Foreveryi =1,2,...,m — 1 and every y € Y N W,, (ii) of
Claim B holds.

If |X| > k + 2, then we are done. Hence, assume that | X| < k + 1.
By Claim A, m > 4 and (ii) of Claim B, we have W,,, W,,_; C X. Let
P = pop; ...pm be a shortest path from w to a vertex p,, € Wy,. It can
be observed that p; € W, for 0 < i < m. Now we show that p,,_; € X
fori € {0,1,...,k—2}. If i = 0,1, then, by Wy, Wi,e1 € X, Py Pm—1 €
X. Suppose that i € {2,3,...,k —2}. For any i € {2,3,...,k — 2} and
z € V(D) — pm—i, if z € Wp,_;41, then, by (ii) of Claim B, d(pm—i, 2) < 3;
if 2z € Wyp_iy2 U--- U W, then by Lemma 2.1 and (ii) of Claim B ,
d(pm-i,2) <3+m—(m—i+1)=i+2<k;if z€ WoU-.-UW,,_;, then,
by Claim A, d(pm—i,2) < 3. This implies p,,—; € X.

Claim C. d(ppm—k+1, Wmn—k+2U- - -UWp,_1) < k and d(pm—ky Wm—k+1Y
U Whoa) < k.

For any z € Wy, k42U ---UW,,_1, by (ii) of Claim B and Lemma 2.1,
d(Pm-k+1,2) < 3+ (m—1) — (m — k+ 2) = k. Similarly, we can obtain
the latter inequality. The proof of Claim C is complete.

To complete the proof of this theorem, first we show that |W,,| =
|W,—1| = 1. Suppose that |W,,,| > 2 and |W,,,—1| > 2. By |X| < k+1,
Prm—kt2s-+,Pm C X, Win_1 € X and W,,, C X, we have |W,,_1| =
(Win| = 2, say Wi—1 = {pm-1,2} and Wy, = {pm, y}, respectively. There-
fore X = {pm—k+2s---»Pm—1,Z,Pm, Y} and ppm_k4+1 € Y. By Claims A and
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C and d(pm—-k+1,Pm) = k — 1, we have d(pm—k+1, V(D) —y) < k. Hence
d(Pm-k+1,Y) = k + 1. Combining this with d(pm—k+1,Pm—1) = k — 2 and
d(Pm—k+1,Pm) = k — 1, we have y — p,,_1 and y — p,,. As D is strong,
z — y. Again, by d(pm~k+1,Pm) = k—1, we have £ = pp—1. lf pro_g — =z,
then pp,—k+41...Pm—2xy is a path of length k — 1, a contradiction. Assume
& — Pm—2. Since z € Wy,_1 and W,,,_1 C Nt (W,,_2), there exists a vertex
2 # pm—2 in Wy, _o5 such that z — z. Clearly, d(z, {z,y,Pm-1,Pm}) < 3.
Combining this with Claim A, we can obtain that z € X, a contradiction
to | X|<k+1.

Suppose |W,,,| = 1 and |W,,,_1| > 2. By Claims A and C, and d(pm—k+1,Pm) =
k — 1, we have pj,—x+1 € X. Combining this with W,,—; C X and
|X| < k+1, we have that |W,,_1| = 2, say Wjn—1 = {Pm-1,2}. Hence,
X = {Pm—k+1,--+,Pm—1,%,Pm} and Pm—k € Y. By Claims A and C,
and d(pm—k,Pm) = k, we obtain that d(pm-«, V(D) — z) < k. Hence
d(Pm—k,x) > k+ 1. It is not difficult tq obtain that £ — py_2, — Pm—_1-
Since W,y C Nt (W,,—2) and z € ij_l, there exists a vertex 2 € Wy,_»
such that z — x. By Claim A and z - £ — pm_1 — Pm, We can obtain
z € X, a contradiction to | X| < k+1. |

Suppose |W,,—1| = 1 and |W,,| * 2. By W,, € Nt (Wp,_1), we
have Wy,_1 — Wy,. This together with Claims A and C, we can obtain
Pm—k, Pm—k+1 € X. Thus {pm—k,.-.,Pm-1}UW,, C X and so | X| > k+2,
a contradiction. !

Hence |Wy,| = |Wp-1| = 1. By Claims A and C and d(pm—k,Pm) =
k, we have X = {pPm—k,Pm—k+1s---Pm—1,Pm}. Now it suffices to prove
that {pm—k+1,---,Pm—1,Pm} — V(D) — X. Assume that this is not true.
Thus, there is a vertex ¢ € V(D) — X which dominates a vertex p; €
{Pm—k+1,---,Pm}. Observe q € {Wy,_k,...,Wpn_2}. Let R be a shortest
path from w to ¢. Then Rp;p;+1...pm is a path from w to p,,. A similar
argument to the proof of Claim C, we can obtain that d(q,W; U --- U
Wp—1) < k. This together with Claim A and d(q, pn) < k, we have ¢ € X,
a contradiction. The proof of Theorem 2.3 is complete. O

Remark. Applying Theorem 2.2, if D = (V(D), A(D)) is a strong
tournament, then there exist at least three 2-kings in D. But if there are
exactly three 2-kings in D, then the analogous result in Theorem 2.3 does’t
hold. See Figure 1. It is easy to check that z3, x4, x5 are 2-kings and 1, z2
are not 2-kings. If there exists a path P = popips such that d(po, p2) = 2,
and {p1,p2} = V(D) — V(P), then d~(p1) = d”(p2) = 1. But in Figure 1,
the vertex of in-degree one is unique, which is z4.
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Figure 1.

We present below the structure of tournaments which have exactly three
2-kings.

Theorem 2.4. Let D be a tournament with no vertex of in-degree zero.
Then D has ezactly three 2-kings x,y, z if and only if V(D) — {z,y, z} can
be partitioned into four sets By, Ba, Bs, By (possibly empty) such that
T —> 2>y —>x, B -2 — ByUB3UBy, Bp > y— By UB3U By,
Bs - z - By UBy U B4, By > B3 —» By — B; and the directions of
arcs between B4 and By, Bs, B3 are arbitrary such that there is no vertex
v € By such that Nt (v)N By #0, Nt (v)N By # 0, N*t(v) N Bs # 0.

Proof. It is not difficult to check that the vertex of maximum out-
degree x; is a 2-king of D, a 2-king x5 of D[N~ (z;)| is a 2-king of D
and a 2-king of D[N~ (z2)] is a 2-king of D as well. We can also see that
a tournament has unique a 2-king if and only if it contains a vertex of
in-degree zero.

We may, without loss of generality, assume that z is the vertex of max-
imum out-degree in D, y is a 2-king of D[N~ (z)] and z is a 2-king of
D[N~ (y)]. Clearly, z,y, z are three 2-kings of D. Set B; = N~ (z) — v.
Since D has exactly three 2-kings, there is only a 2-king of D[N~ (z)] and
soy — By and x — z. Set B, = N~ (y)—z and so £ — Bs. Similarly, there
is only a 2-king in D[N~ (y)] and so z — By. Set B3 = N~ (z) N N*(z)
and By = N*(2) N N*(z). Note that y — B3 U By.

Claim A. Let zizoz3z1 be a 3-cycle of D. If N~ (z1) N N~ (z2) # 0,
then there exists a 2-king of D in N~ (z1) N N~ (x3).

Let w be a 2-king of D[N~ (z;) N N~ (z2)]. Note that for any v’ €
{z1,z9,23} U (N~ (z1) N N~ (z2)), d(w,w’) < 2. For any w"” € V(D) —
{z1, 22, 23}J(N~ (21)NN~(z2)), 21 = w” or 23 — w” and so d(w,w") < 2.
Hence we have shown that w is a 2-king of D. The proof of Claim A is
complete.

Note that none of By U By U B3 U B4 contains a 2-king as z,y, z are
three 2-kings. Since N~ (z) N N~ (z) C B; and none of B; is a 2-king of
D, by Claim A, N~ (z) N N~ (z) = 0 and so z — B;. Again, since zz1yz,
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where 2; € By, is a 3-cycle, N~ (z) N N™(z1) C B; and none of B; is a
2-kings of D, by Claim A, By — Bj;. Since zzy,x, where y; € By, is a
3-cycle, N~ (z) " N~ (y1) C B3 and none of B3 is a 2-king of D, by Claim
A, By — Bgs. Since zyuz, where u € Bg, is a 3-cycle, N~ (y)N N~ (u) C By
and none of Bj is a 2-king, by Claim A, B3 — Bs.

Suppose, on the contrary, that there exists v € By such that N*(v) N
By # 0, Nf(v)N By # 0 and N*(v)NB;s # 0. Let F = {v € By :
Nt(w)NB; # 0, Nt*(v)N By # @ and N*(v) N B3 # 0} and let v’ be a
2-king of D[F] and let v'by,v'by,v'b3 € A(D), where by € By,by € By and
b3EB3. ByBl—)B3—)Bg—)B1 andBl—>m,B3—>z,Bz—>y,wehave
d(v',{z,y, 2} UB; UB3UBj3) < 2. By the definition of F', v’ can reach every
vertex of F' by a directed path of length at most 2. For any v’/ € By — F,
there exists one of {b1,bs, b3} dominates v”, say b;. Since v’ — by — V",
we have d(v',v"") < 2. Hence v’ is a 2-king of D, a contradiction to the fact
that D has exactly three 2-kings.

We now show the sufficiency. By the definition of D, we can check that
z,y, z are 2-kings; for any y’ € By,d(y’,y) = 3; for any 2z’ € By, d(2/,2) = 3;
for any u' € Bs,d(u/,z) = 3; for any v € By, either d(v',z) > 3 or
d(v',y) > 3 or d(v’, z) > 3. The proof of Theorem 2.4 is complete. O
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