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Abstract: A k-king in a digraph D is a vertex which can reach every other 
vertex by a directed path of length at most k. Every tournament with no 
vertex ofin-degree zero has at least three 2-kings. In this paper, we present 
the structure of tournaments which have exactly three 2-kings and prove 
that every strong tournament, containing at least k + 2 vertices with k 3, 
has at least k + 1 k-kings. 
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1 Terminology and introduction 
We only consider finite digraphs without loops and multiple arcs. Let D 

be a digraph with vertex set V(D) and arc set A( D). For any x, y E V(D), 
we will also write x --+ y if xy E A(D). For a vertex x in D, its out-
neighborhood N+(x) = {y E V(D) : xy E A(D)} and its in-neighborhood 
N-(x) = {y E V(D): yx E A(D)}. For disjoint subsets X andY of V(D), 
X --+ Y means that every vertex of X dominates every vertex of Y. We say 
that X strictly dominates Y, if X --+ Y and there is no arc from Y to X. 
For distinct vertices x andy, the distance d(x, y) is the length of a shortest 
directed path from x to y. For any x E V(D) and S V(D), define 
d(x, S) = min{d(x, s) : s E S}. For S V(D), we denote by D[S] the 
subdigraph of D induced by the vertex set S. A digraph D is semicomplete 
if there is at least one arc between any pair of distinct vertices of D. A 
tournament is a semicomplete digraph with no cycle of length 2. 

A k-king in a digraph D is a vertex x which can reach every other ver-
tex by a directed path of length at most k, that is, d(x, y) :S k, for any 
y E V(D) - x. In a number of papers (see, [1-9]), kings were investigated. 
Observe that every tournament has a 2-king. In fact, the vertex of max-
imum out-degree is a 2-king. In [5], Moon proved that every tournament 
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with no vertex of in-degree zero has at least three 2-kings. It seems quite 
natural to ask how many k-kings there can be in the tournament with no 
vertex of in-degree zero. To the knowledge of the authors this problem has 
not previously been addressed in the literature. If a tournament D is not 
strong, then every vertex of the unique initial strong component D' strictly 
dominates every vertex outside of D'. Hence the number of k-kings in D' 
is the number of k-kings in D. Thus we only need to study the problem in 
a strong tournament rather than a tournament with no vertex of in-degree 
zero. In Section 2, we prove that every strong tournament, containing at 
least k + 2 vertices with k 2: 3, has at least k + 1 k-kings and present the 
structure of tournaments which have exactly three 2-kings. For concepts 
not defined here we refer the reader to [2]. 

2 Main results 

We begin with the following lemma. 
Lemma 2.1 [4]. Let {x},U0 ,U1, ... ,U8 be disjoint sets of vertices in 

a digraph D. Let also d(x, U0 ) = t and Ui+1 N+(Ui) for every i = 
0, 1, ... , s- 1. Then d(x, U8 ) ::::; t + s. 

Observe that every tournament has a 2-king. In fact, the vertex of 
maximum out-degree is a 2-king. Furthermore, if a tournament D has a 
vertex of in-degree zero, then this vertex of in-degree zero is the only 2-king 
in D. In [5], Moon proved the following. 

Theorem 2.2 [5]. Every tournament with no vertex of in-degree zero 
has at least three 2-kings. 

Next, we consider the k-kings of strong tournaments with k 2: 3. 
Theorem 2.3. If D = (V(D), A( D)) is a strong tournament, contain-

ing at least k + 2 vertices with k 2: 3, then there are at least k + 1 k-kings 
in D. Furthermore, if there are exactly k+ 1 k-kings in D, then there is a 
path P = PoP1 .. ·Pk, such that d(po,Pk) = k, po,p1, ... ,Pk are exactly k+ 1 
k-kings and {p1,p2, ... ,pk}-+ V(D)- V(P). 

Proof. Let X denote the set of all k-kings in D and let Y = V(D)- X. 
Clearly our theorem is true if Y = 0, so we may assume that Y is not empty; 
let w E Y be arbitrary. Now define Wi as follows: Wi = {v E V(D) : 
d(w,v) = i} for all i = 0,1, ... ,m, where m = max{d(w,v): v E V(D)}. 
As wE Y, m 2: k + 1 2: 4. By the definition of the set Wi, we observe that 
Wi-+ W0 u W1 u · · · u Wi_ 2, for all 2::::; i::::; m and Wi+l N+(Wi) for all 
0 ::::; i ::::; m - 1. We first prove two claims. 

Claim A. For any x E Wi, ifi 2:2, then d(x, WoUW1U· · ·UWi-1)::::; 2 
and d(x, Wi)::::; 3; if i = 1 and N+(x) n W2 =/= 0, then d(x, Wo U W1)::::; 3. 

If i 2: 2, then, by Wi -+ W 0 u W1 u · · · u Wi-2 and Wj+l N+ (Wj) 
with 0::::; j ::::; i -1, we have d(x, W 0 u W1 u · · · u Wi_1) ::::; 2 and d(x, Wi) ::::; 
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3. Suppose i = 1 and let v E N+(x) n W2. By the above argument, 
d(v, Wo U Wl)::::; 2 and so d(x, W 0 U W1)::::; d(x, v) + d(v, W 0 U Wl)::::; 3. 

Claim B. For any y E Wi, 1 ::::; i ::::; m- 1, then either (i) or (ii) below 
holds: 

(i) For every z E Wi+l, there is a (w, z)-path inD-y. 
(ii) d(y, wi+l)::::; 3. 
Assume that neither (i) nor (ii) holds. This implies that there exist 

vertices z1 and z2 in Wi+1 such that there is no (w, z1)-path inD-y and 
there is no (y, z2)-path of length at most 3 in D. Let P = PoPl .. ·Pi+l be 
a shortest path from w to z1 in D and let R = r0r 1 ••• ri+1 be a shortest 
path from w to z2 in D. Clearly y = Pi -+ z1 and y does not dominate 
z2, which implies that z1 I=- z2 and ri I=- y. If z1 -+ ri, then yz1riz2 is a 
(y, z2)-path of length 3 and if ri -+ z1, then r0 r 1 ... riZl is a (w, zl)-path 
inD-y, a contradiction. The proof of Claim B is complete. 

We now prove the theorem by induction on IV(D)J. If IV(D)I = k + 2, 
then, by Y I=- 0, there is a path PoPl .. ·Pk+l in D such that d(po,Pk+l) = 
k + 1. Observe that P1P2 ... Pk+l is the desired path. 

Now assume that IV(D)I k + 3 and that the theorem holds for all 
smaller strong tournaments with at least k + 2 vertices. We consider the 
following two cases. 

Case 1. There exists a vertex y E Y n Wi, 1 ::::; i ::::; m -1, such that (i) 
of Claim B holds. 

We first prove that, for every q E V(D) - y, there is a (w, q)-path in 
D- y, that is, w can reach every vertex of V(D)- yin D- y. Let q E Wj 
be arbitrary and let P = p0p 1 .. ·PJ be a shortest path from w to q in D. If 
j ::::; i, then clearly y 1. V(P) and so we are done. If j i + 1, then by (i) of 
Claim B, there is a (w,pi+l)-path inD-y, which together with Pi+2 ... PJ 
forms a (w,pj)-path inD-y. 

Let u E W m be arbitrary and let R = r0r 1 ... r1 be a shortest path from 
w to u in D - y. As l m k + 1 4, by the minimality of R, r1 -+ r 0 
and so (D- y)[V(R)J is strong. Let Ql, Q2, ... , Q 8 (s 1) be an acyclic 
ordering of the strong components of D- y. As w can reach every vertex of 
V(D)- yin D- y, the vertex w belongs to an initial strong component of 
D-y, say, Ql. Again as D-y is also a tournament, Q1 is the unique initial 
strong component of D- y. Since (D- y)[V(R)] is strong and wE V(R), 
we have V(R) V(Ql)· Hence Q1 has at least k + 2 vertices. 

Now we claim that every k-king in Q1 is also a k-king in D. Let x be 
a k-king in Q1 and let z E V(D) - x be arbitrary. If z E V(Ql), then, 
by the choice of x, d(x, z) ::::; k. If z E V(Qt) for t 2, then x -+ z 
and so d(x, z) ::::; k. Suppose z = y and d(x, y) > k. It follows from the 
above argument that d(x, V(D)- y) ::::; k. Therefore, d(x, y) = k + 1. Let 
Wi(x) = {v E V(D): d(x,v) = i}, i = 0,1, ... ,k+l. As = y and 
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k + 1 2: 4, by Claim A, y is a 3-king and so y is a k-king, a contradiction 
to the fact y E Y. Therefore, the claim is true. 

Using the induction hypothesis for QI. we obtain that there are at 
least k + 1 k-kings in Q1 and so there are at least k + 1 k-kings in D. 
If there are precisely k + 1 k-kings in D, then there are precisely k + 1 
k-kings in Q1, and, thus, there is a path P = PoP1 ... Pk in Q1, which is 
a shortest possible (po,Pk)-path in Q 1 such that {po,P1, ... ,pk} =X and 
{PI.P2, ... ,pk} -+ V(Qi)- V(P). If there is no arc from y to a vertex 
in {p1,p2, ... ,pk}, then clearly {p1,p2, ... ,pk} -+ V(D)- V(P) and we 
are done. So assume that there is an arc yp8 , where 1 :::; s :::; k. We will 
show that y is another k-king in D and, thus, obtain a contradiction to our 
assumption on the existence of the arc YPs· 

By d(p8 , V(D)- (V(Qi) U {y})) = 1 andy-+ p8 , we have d(y, V(D)-
V(Q1)):::; 2. Let z E V(Qi)- V(P). As {p1,p2, ... ,pk}-+ V(Q1)- V(P), 
we have Ps -+ z. So d(y, z) :::; 2. To demonstrate that y is a k-king, 
it is now sufficient to prove that d(y,pj):::; k for every j E {0,1, ... ,k}. 
Suppose s < k. For j > s, d(y,pj) :::; d(y,p8 ) + d(p8 ,pj) :::; 1 + j- s :::; 
1 + k - 1 :::; k. For 0 :::; j < s, pj is dominated by either Ps or Ps+1 as 
Pis a shortest (po,Pk)-path, thus, d(y,pj) :::; 3. Now supposes= k. For 
j E {0, 1, ... , k- 2}, since Pk-+ Pj, d(y,pj) :::; 2. As PkPk-2Pk-1 is a path 
of length 2, d(Y,Pk-1):::; 3:::; k. Hence, d(y, {po,p1, ... ,pk}:::; k. 

Case 2. For every i = 1, 2, ... , m- 1 and every y E Y n Wi, (ii) of 
Claim B holds. 

If lXI 2: k + 2, then we are done. Hence, assume that lXI :::; k + 1. 
By Claim A, m 2: 4 and (ii) of Claim B, we have Wm, Wm-1 X. Let 
P = PoP1 .. ·Pm be a shortest path from w to a vertex Pm E Wm. It can 
be observed that Pi E Wi, for 0 :::; i :::; m. Now we show that Pm-i E X 
fori E {0, 1, ... , k- 2}. If i = 0, 1, then, by Wm, Wm-1 Pm,Pm-1 E 
X. Suppose that i E {2, 3, ... , k- 2}. For any i E {2, 3, ... , k- 2} and 
z E V(D) -Pm-i, if z E Wm-i+l• then, by (ii) of Claim B, d(Pm-i,z):::; 3; 
if z E Wm-i+2 U · · · U Wm, then by Lemma 2.1 and (ii) of Claim B , 
d(Pm-i, z):::; 3+m- (m -i+ 1) = i+2:::; k; if z E Wo U · · · U Wm-i, then, 
by Claim A, d(Pm-i, z) :::; 3. This implies Pm-i EX. 

Claim C. d(Pm-k+1• Wm-k+2U· · ·UWm_i):::; k and d(Pm-k, Wm-k+1U 
· · · U Wm-2) :::; k. 

For any z E Wm-k+ 2 U · · · U Wm_ 1, by (ii) of Claim Band Lemma 2.1, 
d(Pm-k+l, z) :::; 3 + (m- 1) - (m- k + 2) = k. Similarly, we can obtain 
the latter inequality. The proof of Claim C is complete. 

To complete the proof of this theorem, first we show that IWml = 
IWm-11 = 1. Suppose that IWml 2: 2 and IWm-11 2: 2. By lXI :::; k + 1, 
Pm-k+2• ... ,Pm X, Wm-1 X and Wm X, we have IWm-11 = 
IWml = 2, say Wm-1 = {Pm-1,x} and Wm = {Pm,y}, respectively. There-
fore X= {Pm-k+2• ... ,Pm-1• x,pm, y} and Pm-k+l E Y. By Claims A and 
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C and d(Pm-k+1,Pm) = k- 1, we have d(Pm-k+1, V(D)- y) :::;: k. Hence 
d(Pm-k+1, y) ;::: k + 1. Combining this with d(Pm-k+1,Pm-d = k- 2 and 
d(Pm-k+l,Pm) = k- 1, we have y ---7 Pm-1 and y ---7 Pm· As D is strong, 
x ---7 y. Again, by d(Pm-k+l, Pm) = k -1, we have x ---7 Pm-1· If Pm-2 ---7 x, 
then Pm-k+l ... Pm-2XY is a path of length k- 1, a contradiction. Assume 
x ---7 Pm-2· Since x E Wm-1 and Wm-1 N+(Wm-2), there exists a vertex 
z =f. Pm-2 in Wm-2 such that z ---7 x. Clearly, d(z,{x,y,Pm-1,Pm}):::;: 3. 
Combining this with Claim A, we can obtain that z E X, a contradiction 
to lXI:::;: k + 1. 

Suppose IWml = 1 and IWm-11;::: 2. By Claims A and C, and d(Pm-k+l,Pm) = 
k- 1, we have Pm-k+1 E X. Combining this with Wm-1 C X and 
lXI :::;: k + 1, we have that IWm-11 = 2, say Wm-1 = {Pm-1,x}. Hence, 
X = {Pm-k+1, ... ,Pm-1,X,Pm} and Pm-k E Y. By Claims A and C, 
and d(Pm-k,Pm) = k, we obtain thatj d(Pm-k, V(D) - x) :::;: k. Hence 
d(Pm-k, x) ;::: k + 1. It is not difficult to obtain that x ---7 Pm-2, x ---7 Pm-1· 
Since Wm-1 N+(wm-2) and X E wr1-ll there exists a vertex z E Wm-2 
such that z ---7 x. By Claim A and z -y x ---7 Pm-1 ---7 Pm, we can obtain 
z EX, a contradiction to lXI :::;: k + 1. j 

Suppose IWm-11 = 1 and IWml J 2. By Wm N+(Wm_I), we 
have Wm-1 ---7 Wm. This together with Claims A and C, we can obtain 
Pm-k,Pm-k+l EX. Thus {Pm-k, ... ,Pm-dUWm and so lXI;::: k+2, 
a contradiction. 1 

Hence IWml = IWm-11 = 1. By Cl:aims A and C and d(Pm-k,Pm) = 
k, we have X = {Pm-k,Pm-k+1, ... ,Pm-1,Pm}· Now it suffices to prove 
that {Pm-k+b ... ,Pm-1,Pm} ---7 V(D)- X. Assume that this is not true. 
Thus, there is a vertex q E V(D) - X which dominates a vertex Pi E 
{Pm-k+l, ... ,Pm}· Observe q E {Wm-k, ... , Wm-2}· Let R be a shortest 
path from w to q. Then RPiPi+1 .. ·Pm is a path from w to Pm· A similar 
argument to the proof of Claim C, we can obtain that d(q, Wi u · · · u 
Wm-1):::;: k. This together with Claim A and d(q,pm):::;: k, we have q EX, 
a contradiction. The proof of Theorem. 2.3 is complete. D 

Remark. Applying Theorem 2.2, if D = (V(D), A( D)) is a strong 
tournament, then there exist at least three 2-kings in D. But if there are 
exactly three 2-kings in D, then the analogous result in Theorem 2.3 does't 
hold. See Figure 1. It is easy to check that x 3 , X4, x 5 are 2-kings and x1, x2 
are not 2-kings. If there exists a path P = PoP1P2 such that d(po, P2) = 2, 
and {p1,P2} ---7 V(D)- V(P), then d-(pl) = d-(P2) = 1. But in Figure 1, 
the vertex of in-degree one is unique, which is x4 . 
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Figure 1. 

We present below the structure of tournaments which have exactly three 
2-kings. 

Theorem 2.4. Let D be a tournament with no vertex of in-degree zero. 
Then D has exactly three 2-kings x, y, z if and only if V (D) - { x, y, z} can 
be partitioned into four sets B 1 , B 2 , B 3, B4 (possibly empty) such that 
X -7 z -7 y -7 x, Bl -7 X -7 B2 u B3 u B4, B2 -7 y -7 Bl u B3 u B4, 
B3 -7 z -7 B1 U B2 U B4, B1 -7 B 3 -7 B2 -7 B1 and the directions of 
arcs between B 4 and B1 , B2 , B 3 are arbitrary such that there is no vertex 
v E B 4 such that N+(v) n B1 -1- 0, N+(v) n B2 -1- 0, N+(v) n B 3 -1- 0. 

Proof. It is not difficult to check that the vertex of maximum out-
degree x1 is a 2-king of D, a 2-king x2 of D[N-(x1)] is a 2-king of D 
and a 2-king of D[N-(x2)] is a 2-king of D as well. We can also see that 
a tournament has unique a 2-king if and only if it contains a vertex of 
in-degree zero. 

We may, without loss of generality, assume that x is the vertex of max-
imum out-degree in D, y is a 2-king of D[N-(x)] and z is a 2-king of 
D[N- (y)]. Clearly, x, y, z are three 2-kings of D. Set B 1 = N- (x) - y. 
Since D has exactly three 2-kings, there is only a 2-king of D[N-(x)] and 
soy -7 B1 and x -7 z. Set B2 = N-(y) -z and sox -7 B2. Similarly, there 
is only a 2-king in D[N-(y)] and so z -7 B2. Set B 3 = N-(z) n N+(x) 
and B4 = N+(z) n N+(x). Note that y -7 B 3 U B 4. 

Claim A. Let x1x2X3X1 be a 3-cycle of D. If N-(x1) n N-(x2) -1- 0, 
then there exists a 2-king of Din N-(x1) n N-(x2). 

Let w be a 2-king of D[N-(x1) n N-(x2)]. Note that for any w' E 
{x1,x2,x3} U (N-(x1) n N-(x2)), d(w,w') :::; 2. For any w" E V(D)-
{x1, x2, x3}U(N- (xl)nN- (x2)), x 1 -7 w" or x2 -7 w" and so d(w, w") :::; 2. 
Hence we have shown that w is a 2-king of D. The proof of Claim A is 
complete. 

Note that none of B 1 U B 2 U B 3 U B 4 contains a 2-king as x, y, z are 
three 2-kings. Since N-(x) n N-(z) C B1 and none of B1 is a 2-king of 
D, by Claim A, N-(x) n N-(z) = 0 and so z -7 B1. Again, since xz1yx, 
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where z1 E B2, is a 3-cycle, N-(x) n N-(zl) C B 1 and none of B 1 is a 
2-kings of D, by Claim A, B2 ---+ B1. Since xzy1x, where y1 E B1, is a 
3-cycle, N-(z) n N-(yl) C B 3 and none of B 3 is a 2-king of D, by Claim 
A, B1---+ B3. Since zyuz, where u E B 3, is a 3-cycle, N-(y)nN-(u) C B2 
and none of B2 is a 2-king, by Claim A, B 3 ---+ B 2. 

Suppose, on the contrary, that there exists v E B4 such that N+ ( v) n 
B1 =/= 0, N+(v) n B2 =/= 0 and N+(v) n B 3 =/= 0. Let F = {v E B4 : 
N+(v) n B1 =/= 0, N+(v) n B 2 =/= 0 and N+(v) n B3 =/= 0} and let v' be a 
2-king of D[F] and let v'b1, v'b2, v 1b3 E A( D), where b1 E B1, b2 E B2 and 
b3 E B3. By B1 ---+ B3 ---+ B2 ---+ B1 and B1 ---+ x, B3 ---+ z, B2 ---+ y, we have 
d(v', {x, y, z} UB1 UB2 UB3 ) ::; 2. By the definition ofF, v' can reach every 
vertex ofF by a directed path of length at most 2. For any v" E B 4 - F, 
there exists one of { b1, b2, b3 } dominates v", say b1. Since v' ---+ b1 ---+ v", 
we have d( v', v") ::; 2. Hence v' is a 2-king of D, a contradiction to the fact 
that D has exactly three 2-kings. 

We now show the sufficiency. By the definition of D, we can check that 
x, y, z are 2-kings; for any y' E B 1, d(y', y) = 3; for any z' E B 2, d(z', z) = 3; 
for any u' E B3,d(u',x) = 3; for any v' E B 4, either d(v',x) 2: 3 or 
d(v', y) 2: 3 or d(v', z) 2: 3. The proof of Theorem 2.4 is complete. D 
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