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Abstract

The polynomial algorithms for isomorphism testing in 3-regular graphs known to
date use set-wise stabilisation in 2-groups acting on singletons, pairs, and sometimes triples
of vertices. In this note we describe a new, simpler way of "getting rid of the triples".
Although the order of the complexity of isomorphism testing remains O(n3 log n), the
resulting algorithm is more efficient, since this portion of the set-wise stabilisation in the

algorithm will be faster.
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1. Introduction.

We shall use the graph-theoretic terminology of Bondy and Murty [1], so that a
graph X has vertex set V(X) and edge set E(X). If AcV(X), then X[A] denotes the subgraph
induced by A. [A,B] denotes the set of edges of X with one end in A and one end in
BcV(X).

Let X be a 3-regular graph. Choose an edge e E(X). The polynomial graph
isomorphism algorithms of Hoffman, Luks et al. [1,2,3,4] for 3-regular graphs find
Aut (X), the subgroup of Aut(X) which fixes the edge e. The technique depends on finding
set-wise stabilisers in 2-groups. Subdivide e with a new vertex v, and find the distance
partition of V(X) into {vy}+ V,+ V,+... + V,, as indicated in Fig. 1. X is decomposed into
a sequence of graphs X, Xy Xy, ooy Xpyq» Where VX = {vy} + Vi+V,+.+V,,and
EXp) =X[{vp} + V; + .. + Vi JU [V 1, V] G = Aut(X,), for each k=0, 1, ..., h+1,
so that G ,; = Aut (X). The algorithm successively finds Gy, from G,. This is done as
follows.
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Fig. 1

Let ¢;:Gy,;—Gy be the natural homomorphism. Ker(¢, ) fixes each vertex of X,. It
is very easy to find because of the 3-regularity of X. K,,, =G,,,/Ker(¢,) consists of all
automorphisms of X, ; which can be extended from G,. In order to find Ky s itis
necessary to consider the action of G, on the edges [V,,V,] and [V,,V, ;] in going from X
to X,,;- This is done by finding set-wise stabilisers in G, which is a 2-group. Together,

Ker(¢,) and K, ,; define generators for G, ;.
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Vertices xe V,,; which are joined to three vertices in V, present a slight problem. In
the algorithm of [3], G, was allowed to act on V, + (\ék) + (\gk), the set of all singletons,
pairs, and triples of vertices. In [2], the triples are eliminated by replacing each such xe V,
by a triangle, as shown in Fig. 2. This gives a new graph )_(k +1 Which is still 3-regular, but

which has no such triples. However, it may require the addition of a substantial number of

new vertices and edges to X.

Fig. 2

In this note, we describe a simpler method of eliminating the triples. It does not
change the complexity of the algorithm, which remains O(n? log n), but it will improve some

of the set-wise stabilisation, giving a faster algorithm.

2. Triangles and Octahedra.

What one would like to do is to replace each xe V, ,; joined to u,v,we V, by three
new edges uv, vw, wu in X, and colour them red, say, to distinguish them from the other
edges of X,. We would then want the set-wise stabiliser of the red edges to induce
corresponding permutations of the vertices xe V,_, so joined. The problem is that although
each such xe V|, defines a red triangle in X, a red triangle in X need not necessarily
correspond to a vertex in V, ;. Call each red triangle of X, a true triangle if there is a
corresponding vertex in V, ; and a false triangle if there is no corresponding vertex.

Problems only arise if some element of G, maps a false triangle to a true triangle. We show
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that this happens only in exceptional circumstances, which can be easily detected and dealt

with.

2.1 Definition. For each xe V,_,; joined to three vertices u,v,we V.. add three new edges
uv, vw, and wu to X[V, ], and colour them red, to distinguish them from other edges of X,.
X[V,] may now contain pairs of vertices u,v joined by two parallel red edges. In this case,
replace the pair of red edges by a single edge, coloured double red, a new colour. We denote
the two classes of red edges by R and RR, respectively, and collectively refer to both as red

edges. R denotes the subgraph of X[V, ] induced by the red edges (R and RR).

R, consists of a number of triangles, some of which will be true trian gles, and some
of which will be false triangles. G,(R,) denotes the subgroup of G, which stabilises the

edges R, set-wise. We state a number of simple properties as lemmas.

2.2 Lemma. Each edge of R, belongs to at least one true triangle. [

2.3 Lemma. If a triangle of R, contains two RR edges, then the third edge is also RR.

Proof. Each ue V, can be joined to at most two vertices of Vi O

2.4 Lemma. Any triangle containing an RR edge is a true triangle.

Proof. Each ue V, can be joined to at most two vertices of V, ;. O

Suppose now that T=uvw is a false triangle of R,. Each side of T belongs to a
different true triangle, for otherwise T would be a true triangle. Let T =uvx be the (unique)
true triangle containing uv. Let T =uwy be the true triangle containing uw. If x=y, then ux
must be colored RR, as indicated in Fig. 3. In this case T is said to be a false triangle of type

I, viz., one or more vertices of T is incident on an RR edge.
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Fig.3

If x#y the situation of Fig. 4 holds. Here T, =vwz is the true triangle containing
vw; and X,y, and z are three distinct vertices, for otherwise T would reduce to type I. In this

case T is said to be of ty'pe 11, viz., all vertices of T are incident on R edges, only.

Fig. 4

An interesting case occurs when xyz also form a true triangle, as indicated in Fig. 5.
In this case each of u,v,w,x,y, and z are incident on four R edges, so that each is adjacent to
two vertices of V, ;. This forms a connected component C of R. C is isomorphic to the
graph of the octahedron. The triangles of C are alternately true and false, as indicated by the

shading of Fig. 5. We call any such component of R, an octahedron.
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Fig. 5

2.5 Lemma. No false triangle of type I can be mapped by G, (R,) to a true t{iangle.

Proof. Let T=uvw be a true triangle onto which a false triangle of type I has been mapped.
Then vertex u, say, is incident on an RR edge ux (see Fig. 3). Since ux is an RR edge, it is
contained in two true triangles. This forces u to be adjacent to at least 3 vertices of Vi
which is impossible.[]

2.6 Theorem. A false triangle of type II can be mapped by G (R to a true triangle uvw
only if the connected component of R, containing uvw is an octahedron.

Proof. Let T=uvw be a true triangle onto which a false triangle of type II has been mapped.
Let x,y, and z be the other vertices associated with a type II triangle, as indicated in Fig. 4.
Since T=uvw is a true triangle, triangles uvx, uwy, and vwz are false, as is indicated by the
shading. Let vxt be the true triangle containing vx. If tz, then v must be adjacent to three
vertices of V|, since vz is also contained in a true triangle. It follows that vxz froms a true
triangle. Similarly wyz and uxy also from true triangles, so that the component of R

containing T is an octahedron. [
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So if Ry contains no octahedra, G, (R,) necessarily maps true triangles to true
triangles only. If R contains octahedra, then octahedra are mapped to octahedra, since they
are connected components of R,. If C, and Cj are two octahedra such that C; is mapped to
Cj, then either the true triangles of C; are mapped to the true triangles of Cj, or else all true
triangles of C, are mapped to false triangles of C;

The octahedra of R, are very easy to find. Each vertex of V| has degree at most 4 in
R,, so that we can find the components of R, in at most 4.1V, | steps. An octahedron is
characterized as a 4-regular connected component with 6 vertices (and 12 edges). Suppose

there are m octahedra C,, C,, ..., C . Perform the following steps.

Begin
Fori:=1to m do begin
create 2 new vertices T, and F; { representing the true and false triangles of C}
end
Compute G (R,)
{ now add the new vertices T, and F,, i=1,2,...,m to Vi)
For each generator g of G, (R,) do begin
{ we extend g to act on the T; and F, }
For i:=1 to m do begin
Choose a true triangle T of C; { this is easy to do since the true triangles of
R, are defined by vertices xe V, ,; initially }
Compute g(T)
Determine which Cj contains g(T) { this will depend on the algorithm and
data structures used to find the components of R, }
If g(T) is true then begin
define g(T)) := Tj
define g(F)) := Fj

end
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else begin
define g(T)) := Fj
define g(F) := T;
end
end;
{ at this point, g(T;) and g(F,) are defined for all i }
End; { all generators have been processed }
Compute the set-wise stabiliser S of {T}, T, ..., T} in G (R))

End;

The resultant set-wise stabiliser S is the group we want. Each element of Sy
induces a permutation of the vertices xe V, ,; joined to three vertices of V.. The subgroup of
G, which can be extended to X, 41 18 a subgroup of S,. The other vertices of Vi1 those
joined to one or two vertices of V,, can be dealt with in the usual manner.

Consider the usual method (see [4]) used to find a set-wise stabiliser of a set M in a
2-group G acting on a set V,. We first compute a tower of subgroups for G based on a tree
of block systems for G and its subgroups. In the algorithm of [2], one tree is used for all
groups encountered throughout the algorithm. At the bottom of the tree, the subgroups
respecting the block partitions of V| are point-wise stabilisers in G. We break G into cosets
H+oH, where the subgroup H fixes the first block partition in the tree. The stabiliser Cu@G)
is either Cy(H), or <Cy,(H), p>, where pe oH fixes M. Given o, the algorithm consists of
searching through the tree of block partitions to see whether the o-coset of the corresponding
subgroup contains such a p. The number of elements of G which must be examined in order
to find Cy(G) is at least O(IV, ) (if the recurrence of [4] is used, we get O(IVklz)). Since we
are really interested in the action of G on pairs of vertices, the quantity (‘Q‘):VEQ is the
important one.

If R, contains m octahedra, corresponding to 4m true triangles, or 12m edges (and

at least 12m new vertices if the graph )_(k of [2] is used, not counting the triangles not
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contained in octahedra - i.e., probably most triangles), then the present method requires
introducing only 2m new vertices. They simply add another orbit to the partitions in the tree
of block systems, and so do not affect the number of nodes it contains. The action of all the
groups in the tower on the new vertices T, and F; must be computed, but this can be most
easily done when T; and F, are being defined. Furthermore, the 4m vertices xe V,
corresponding to these octahedra all have degree three to V,, so that they do not contribute to
the next iteration, from G, ; to G, ,,. If the other method is used there are at least 12m new
vertices which must be added to V, ;. Then V% +1/2 increases by at least 12mV, ,; +72m?,
These new vertices (and pairs) must also be inserted in the tree of blocks partitions and this
tends to increase the number of nodes in the tree.

So the use of octahedra should improve the efficiency of the set-wise stabilisation
portion of the algorithm noticeably even though it will not change the order of complexity of

the algorithm, which remains O(n3 log n).
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