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SOME NEW METHODS IN RECONSTRUCTION THEORY

W.L. KOCAY

This is an expository paper in which we describe two new methods
in the graph reconstruction problem.

The Algebra of Subgraphs deals with relations that hold among the
subgraphs of a graph. It is the combinatorial principle used in Tutte's
"All the King's Horses". )

The method of Partial Automorphisms is concerned with extending an
isomorphism between two graphs to an automorphism of some larger graph.
We describe its use in connection with pseudo-similar vertices in a graph,
and with the problem of reconstructing graphs with only two degrees, k
and k-1.

I. THE ALGEBRA OF SUBGRAPHS

1. THE RECONSTRUCTION CONJECTURE

Let G be a simple graph with vertex-set V(G) and edge-set E(G).
We shall use the notation of Bondy and Murty [4], so that 6 has v(G)

vertices and €(G) edges.

We begin by defining the graph reconstruction problem. We use
G-v to denote the vertex-deleted subgraph-of G got by deleting the
vertex v and all its incident edges.

Definition. Graphe G and H are reconstructions of each other if
there exists a bijection ¥ : V(G) + V(H) such that for every v ¢ V(G),
G-v = H-y(v).

1.1 'Reconstruction Conjecture. If 6 and H are reconstructions of

each other with at least three vertices, then 6 = H.

We refer the reader to Bondy and Hemminger [3] or to Nash-Williams
(161 for comprehensive surveys of the reconstruction problem.

From the statement of the reconstruction conjecture, we see that
it is not the individual graphs G and H which are important, but
rather their isomorphism type. The same is true of the vertex—deleted
subgraphs G-v and H-y(v). Accordingly, it is convenient to rephrase
the reconstruction conjecture as follows.
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1.2 RCl. If G has at least three vertices, then the isomorphism
type of 6 is determined by the isomorphism types of its vertex-
deleted subgraphs.

We defined the vertex-deleted subgraph G-v by deleting the
vertex v. It is worthwhile to look at it from anotherp point of view.
It is very easy to see that G-v is really the subgraph of G induced
by all vertices but v, i.e.,

G-v = GLV(G)-{v}].

This point of view leads naturally to the Algebra of Subgraphs
- described in subsequent sections.

There is another, equally fundamental way of forming subgraphs of
a graph. We can also consider edge-induced subgraphs of G. 1In partic-
ular, if e ¢ E(G), we define the edge-deleted subgraph' G-e as that
subgraph of 6 induced by'all edges but e:

G-e = GLE(G)-{e}1].
It is only natural that there should be anothér reconstruction

conjecture based on this way of forming subgraphs.

Definition. Graphs 6 and H are edge-reconstructions of each
other if there exiats a'bijecfion ¥ : E(G) + E(H) such that for every
e ¢ E(G), G-e = H-y(e),.

Two examples of graphs which are edge-reconstructions of each other
follow.

1.3 Example.

H = i ' '
1.4 Examgle. .
6= . H= . i -\-

Notice that these examples differ slightly from the usual ones in
that we have left out any isolated vertices. This is because isolated
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vertices are lost when an edge-induced subgraph is formed, and so need
not be included.

1.5 Edge-Reconstruction Conjecture, If G and H are edge-reconstru-

ctions of each other with at least four edges, than G = H.

Again we notice that it is really the isomorphism type of & and
H which is important,.and we rephrase the edge-reconstruction conjecture

as follows.

1.6 ERCl. If G has at least four edges then the isomorphism type of
G is determined by the isomorphism types of its edge-deleted subgraphs.

We have two reconstruction conjectures because there are two funda-
mental ways of forming subgraphs of a graph. These two ways of forming
subgraphs define two order relations on the set of all graphs.

If g is an edge-induced subgraph of G, we write g < G.
If g is a vertex-induced subgraph of G, we write g <'G.

It is interesting to rephrase both reconstruction conjectures at
once, in terms of these two order relations.

1.7 RC2. If G has at least four edges, then the isomorphism type
of G 1is determined by the isomorphism types of its maximal proper

subgraphs.

2. TWO TYPES OF SUBGRAPH

Corresponding to the two kinds of subgraph, we define the follow-

ing notation.

Let> g and G be graphs. We define
s(g,6) = |{V'eV(6) : GIV'l=g}].
In words, s(g,8) is the number of vertex-induced subgraphs of

6 which are isomorphic to g.

If g has no isolated vertices we define
n(g,8) = |{E'€E(G) : G[E'l=g}]|.

In words, n(g,G) is the number of edge-induced subgraphs of G

which are isomorphic to g.

It is convenient to extend the definition of n(g,G) to include
graphs g with isolated vertices. Let g have k isolated vertices.
Write

g = g' + kK,
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i.e., the disjoint union of g' and k isolated vertices, where g'

has no isolated vertices. Define
- '
n(g,6) = ["‘G)k"‘g ’]n<g',e),

i.e., we choose a subgraph isomorphic to g' and then we choose k of
the remaining vertices, in all possible ways. In case g' 1is the empty
graph 8, we define n(d,6) = 1, for any graph G.

2.1 Example.
G = g-=
b
s(g,6) = 2 and n(g,G) = 8.

The Algebra of Subgraphs is concerned with relations among the
n(g) and s(g), as g ranges over all isomorphism types of graphs.
Here, and in the sequel, we suppress the 6 in s(g,8) and n(g,6),
unless the graph G need be specified. Most of the formulae will be
true for any G, and as such, do not depend on G.

There are several elementary relations connecting the s(g) and
n(g), as illustrated below in the case of three vertices.

2.2 Example.

A = stA)

(L) = 3 A + s( L)

n(,0,) = 3s(A) + 2s( L)+ (%)),

(o) = S(A) + s(L)+ s( 20+ s(.°)

This is an example of a simple and well-known result (see Biggs
f11,02], Erdds, Lovdsz, and Spencer [6], and Kocay [11]).

2.3 Theorem. Let g,58,5-++38y be a liat of all isomorphism types
of graphs on n vertices. Then
. n .
n(g;) = jzl Mijs(gj), i=1,2,...,m,

where -Mij = n(gi,gj). The matriz M 18 non-gingular, and

n

= [Mij]mxm

the entries of M;l are integers.

Proof. Let G be any graph, and let g; < G. Then
G[V(gi)] = gj, for some j. G[V(gi)] contains exactly Mij edge~
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induced subgraphs isomorphic to g;. Each of these is a subgraph of &
with the same vertex-set V(gi). Thus the formula holds.
To see that M, is invertible, order the g;, i=1,2,...,m-1, so
that e(gi) 2 e(gi+1). Then M 1is a lower triangular integral matrix
. . . -1
with a diagonal of ones, as in Example 2.2. So is Mo a
Clearly M represents a change of basis transformation in the
vector space spanned by the s(gi). Theorem 2.3 allows us to work with

whichever basis, s(gi) or n(g;), that we choose.

It was shown by Whitney (191 in 1932 that the number of the n(gi),
i=1,2,...,m, that are algebraically independent is equal to the number

of the g; that are connected.

3. KELLY'S LEMMA AND THE ALGEBRA OF SUBGRAPHS

One of the first results ever proved about reconstruction is the

following.
3.1 Kelly's Lemma. Let g and G be graphs such that v(g) < v(6).
" Then
1
s(g,6) = JrEyvieY I s(g,6-v).
’ v(6)-vig) yey(e)
(The same result holds for n(g,G).)

Proof. If g s G, then if we delete any vertex v e V(G) -v(g),
we must still have g s G-v. Therefore the summation above counts each

subgraph g s G exactly v(G) -v(g) times..

The same argument proves that this formula also holds for n(g,G).
Alternatively, we can apply the matrix Hv(G) to this linear formula.OD

3.2 Kelly's Edge-lemma. Let g and G be graphs with no igsolated
vertices, such that v(g) s v(6) and e(g) < €(6). Then

. 1
n(g,G) = T -c(g) ee%(g) n(g,G-e). 0

In 1.7 we rephrased the reconstruction conjectures 1.1 and 1.5 in
terms of maximal proper subgraphs. By 3.1 and 3.2 we can now reformulate
them as follows.

3.3 RC3. If G has at least four edges, then the isomorphism type of
G is determined by the isomorphism types of its proper subgraphs.

This then, is what the reconstruction problem is all about: is a

graph determined by its subgraphs?

For a long time, Kelly's Lemmas were virtually all that was known
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about the reconstruction problem. For example, disconnected graphs are
determined by their subgraphs essentially because we can use Kelly's
Lemma to count the number of each type of maximal connected subgraph,
i.e., we can find the connected components,

Trees are determined by their subgraphs, largely for the following
- reason. Each tree has either a central vertex or a central edge. ‘We
can break a tree into its branches, that is, its maximal subtrees which
-have degree one at the centre. We can count the number of each type of
maximal branch, using Kelly's Lemma, and then put the tree together
again (see Bondy and Hemminger [3), Nash-Williams [16], or Kocay [10]).

The main difficulty with Lemma 3.1 is that we must have
v(g) < v(G); we obtain no information about spanning subgraphs of G.
In his famous paper "All the King's Horses" [18], W.T. Tutte succeeded
in counting the number of hamiltonian cycles of G, the number of
spanning trees of G, and other spanning subgraphs. His method was to
use some polynomials associated with a graph. We present here a direct
combinatorial approach to count these same subgraphs. The method rests
on the following observation.

If we choose two distinct edges of a graph G, either we get
independent edges, or we get adjacent edges:

3.4 Example.
ne-o)) = n(®2) + (L) .

This is a special case of the following theorem (see Kocay [111]).

3.5 Edge Theorem. Let gis i21, be a list of all igsomorphism
fypes of graphs with no igolated vertices. Let g and g' be any two
such graphs. Then ’

n(gin(g') = |} b, n(g.),

iz 7%

where the coefficient bi 18 the number of decompositions of E(gi)
into E v E' (it need not be that En E' = Q) such that gi[E] = g
and g;[E'] = g'.

‘ Proof. Let G be any graph, and let g c G and g' € G. Then
GLE(g) vE(g")] = gi» for some g;- But E(g;) has exactly b,
decompositions into E v E' such that gi[E] ~ g and g;(E'] = g'.
Clearly G[E]l = g and G[E'] = g' for each such decomposition. 1]

This theorem has essentially been proved also by Biggs [2] in a
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The analogous theorem for vertex-induced subgraphs is the follow-
ing.
3.6 Vertex Theorem. Let g;» i 21, be a list of all isomorphism
types of graphs, and let g and g' be any two graphs. Then

s{g)s(g')y = § a, s(g.),
iz1 1
where the coefficient a; 18 the number of decompositions of V(gi)
into V u V' (it need not be that V n V' = 8) such that g;lvl = g
t ~ 1
and gi[V q 2 gt o
Several remarks are in order.

We call the identities of Theorem 3.5 edge-identities and those

of Theorem 3.6 vertex-identities.

Each identity is finite, since there is no such decomposition of
E(gi) or V(g;) if elg;) > e(g) +e(g') or if v(gi) > v(g) +v(g*),
respectively.

These identities have the obvious extension to products of any
finite number of terms: n(g)n(g')n(g")...n(g(k)) or

s(g)s(g')s(g")..;s(g(k)).

Theorems 3.5 and 3.6 represent the combinatorial principle behind
the polynomials of "All the King's Horses" (18].

4. APPLICATIONS TO RECONSTRUCTION

In this section we give direct combinatorial proofs of the results

obtained via polynomials by Tutte [18].

Definition. Any property of a graph G that is determined by the
isomorphism types of G-v, for v € V(G), is said to be reconstructible.

Any property of G that is determined by the isomorphism types of
G-e, for e ¢ E(G), is satd to be edge-reconstructible.

4.1 Theorem. The number of disconnected spanning subgraphs of € with
the isomorphism types of the components specified is reconstructible.

Proof. Specify the components by g,g',g",...,g(k). Form the

edge-identity corresponding to the product n(g)n(g')n(g")...n(g
It is a linear combination of g i 2 1. The only such 8; with

v(G) vertices is a disconnected graph with components

£:8'58"5. -sg(k)'

If we want each component to appear as a vertex-induced subgraph
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of G, we use the vertex-identity s(g)s(g')s(g")...s(g(k)).

o
4.2 Coroliary. The number of one-factora of G 18 reconstructible.
Proof. Choose each component g,g',g",...,g(k) isomorphic to
K, | 0
For example, if we rewrite Example 3.4 as follows, we find that
- we have reconstructed the number of one-factors in a graph on four

vertices.
4.3 Example.

(02 - (“T”) -n( L) -

b,y Theorem. The number of hamiltonian cycies of G <& reconstruct-
ible.

Proof. Let v(g) = n. A hamiltonian cycle has n edges. A
spanning subgraph with n edges is either

(i) disconnected, or
(ii) connected, with only one cycle.

In the first case, we can count such spanning subgraphs by

Theorem 4.1.

In the second case, let Ck be a cycle of length k. Form the
following linear combination of edge-identities:

n(K,) n-1 n(K,)-k
- I n(Cy)
n k=3 n-k

i.e., for every cycle of lengths 3,4,...,n-1, we choose enough edges
to get a graph with n edges, and then subtract these graphs from all
graphs with n edges. The result is a linear combination of hamilton-
ian cycles, and graphs which we can count. o

4.5 Example. The number of hamiltonian cycles in a graph with five
vertices is

(7)< 20 () - i + gz

vApplying this formula to K;, we find that

n(o—o,k:) = 10, n(§73.ks)

n(Lyks) = 10, n(§A0.xs)

15,
30.
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The number of hamiltonian cycles is

105 9017} - 15.6 + 2.30 = 12.
5 2

On the other hand, it is well-known that K, has (n-1)1!/2
hamiltonian cycles. When n = 5 this gives 4!/2 = 12 hamiltonian
cycles.

4.6 Theorem. The number of separable spanning subgraphs of G with
the igomorphism types of the blocks specified is reconstructible.

Proof. Specify the blocks by 81585528k A separable graph
g with these blocks satisfies

k
wWg) = 1-k+ ] vig;).
i=1

This is essentially a statement that the block-cut-vertex tree
is a tree (see Tutte [171]).

Form the edge-identity n(gx)n(gz)...n(gk). Every spanning
separable graph g with these blocks satisfies v(g) = v(G) and will
appear in this identity. Conversely, any connected graph g in this
identity satisfying v(g) = v(G) mnust be separable, with blocks
€138, 28> Dby the above formula.

If we want each block to appear as a vertex-induced subgraph of
G, use the vertex-identity s(gl)s(gz)...s(gk). 0

4.7 Corollary. The number of spanning trees of G is reconstruct-
ible.

Proof. Choose each block in Theorem 4.6 to be KX,. O

4.8 Example. The number of spanning trees in a graph with five .

("(°;'°)' - n( Ay (n(o—0)-3) - n(§]) .

vertices i8:

If we apply this to Ky, using the values from Example 4.5, we
find that the number of spanning trees of K, 1is
101 _ 30.7 - 15 = 125 = 5°,
4
which we recognize as Cayley's formula for the number of trees on §

vertices.

Definition. The characteristic polynomial of G <& det(AI-A),
where A 1ig the adjacency matriz of G.
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4.9 Theorem. The chgracteristic polynomial of G ig reconstructible.

Proof. Expand det(AI-A) in principal r-rowed minors of A.
Each such minor is a sum over sesquivalent (see Tutte [18]) subgraphs
of 6, i.e., subgraphs of & which are disjoint unions of circuits
and edges. By Theorems 4.1 and 4.4, the number of these is reconstruct-~
ible. : 8]
4.10 Theorem. The number of hamiltonian paths of G with non-adjacent

ends i8 reconstructible.

Proof. We use a device of Tutte [18]. Join each pair of non-
adjacent vertices of G-v, for all v ¢ V(G), by a new edge, coloured
blue, say, to distinguish it from the edges of G. Use Theorem 4.4 to
count the number of hamiltonian cycles of the new graph with one blue
edge, and the remaining edges true edges. a

Definition. The rank polynomial of G,i R(G;z,t) <is

R(G;z,t) = 7§ tp(g)zr(g)’
43¢

where the co-rank p(g) is the number of vertices of g minus the
number of components of g, and the rank of g s r(g) = e(g) -p(g).

4.11 Theorem. The rank polynomial of G +is reconstructible.

Proof. By Tutte [18; ‘Theorem 7.3, R(G3;t,z) is determined by
the terms of degree less than p(G) in t. By Lemma 3.1 and Theovenm
4.1, these terms are reconstructible, O

%.12 Corollary. The chromatic polynomial, P(G,u) is reconstructible.

Proof. By Tutte [181, P(G,u) = uv(G)R(G;-u-l,-l). o
5. RECONSTRUCTING SPANNING TREES, AND FURTHER RESEARCH

In the previous section, we used the Algebfa of Subgraphs to give
simple proofs of results already obtained by Tutte.

In this section, we investigate whether these results can be

extended.

In Theorems 4.1 and 4.7 we reconstructed the number of spanning
disconnected subgraphs of G of each isomorphism type, and the total
number of spanning trees. A natural place to begin then, is with
individual spanning trees.

5.1 Conjecture. Let T be a tree such that v(T) = v(6). Then
n(T,G), the number of spanning trees of @ isomorphic to T, is
reconstructible,
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It is not known how to do this in general, but the following
example from Kocay [12] is perhaps interesting.

There are three mutually non-isomorphic trees on five vertices.

<o X

1 T T

We form the following three edge-identities.

n(}\,)(nw—o)-s) = n($o-0) + n(J0-0-0) + 4n(X7) + n(«i\)),
(D (n(o—0-3) = (o) + 4n(§ + 2nig o) + e

33

+ 2n(2>o—o—o) + n(o—o) R

n(ozzo> = A) + 3n(/&0) +n(§_J) + 2n(Ppo-o) + Zn‘(u) +
+ n(ﬁo) + n(&o—o—o) + 3n(%) + n({ }) .

The left-hand side of each identity is reconstructible. The right-
hand side of each contains a linear combination of n(T,), n(T,), and
n(T,), 'as well as a linear combination of terms which are reconstruct-
ible. Thus, we can reconstruct n(T,), n(T,), and n(T,) if we can
invert the following matrix.

1 4} [n(T, P,
2 2 0} In(T)} = |P,| -
1 1 3| |n(T)) P,

The inverse is

-6 -1 8

1

3 6 4 -8} .
0 -1 2

In general, suppose there are m trees Tx’Tz""’Tm' on n
vertices. With each tree we should like to associate uniquely some
edge-identity which gives a linear combination of n(Tl),n(Tz),...,n(Tm),
as well as some terms known to be reconstructible. If we can show that

the resultant identities are linearly independent, then we can
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reconstruct n(Tl),n(Tz),...,n(Tm).

This is not difficult to do for trees on 6 or 7 vertices, but

the author knows of no general construction.

Having reconstructed the number of spanning trees of a given type,
we would then know the numbers of all subgraphs with at most v(G)-1-
edges. We should then add one more edge and construct edge-identities
for spanning subgraphs with v(G) edges. We continue like this, build-
ing up one edge at a time, until we have reconstructed the edge-deleted
subgraphs of G. This would prove that the edge-reconstruction and
vertex-reconstruction conjectures are equivalent. One more application
would then prove (we hope) that both conjectures are true.

Clearly if this approach is to work, there must be enough linearly
independent edge-identities.

5.2 Theorem. The number of linearly independent edge-identities
available for reconstructing graphs with n vertices and e edges is
at most the number of disconnected graphs with no tsolated vertices,

e edges, and at least n vertices, such that each component has at

most n vertices.

Proof. We wish to use an edge-identity of the form
n(gl)n(gz)...n(gk) for reconstructing graphs with n vertices and e
edges. Clearly we must have v(gi) s n for each i = 1,2,...,k. We

must also have

vig,) +v(g2) t...tv(g) 2 n,
or we do not obtain spanning subgraphs. Similarly we must have
elg,) +e(g,)+... telg) = e,

since we want each identity to contain a linear combination of graphs
with e edges, but no graphs with more than e edges.

If some g; is disconnected, with components g,g',g",...,g(z),

say, then we ean replace n(gi) by n(g)n(g?)n(g")...n(g(l)) and not

change ‘the number of independent identities.

We now see that each identity corresponds uniquely to a disconnec-
ted graph with components 815825+ 58, which satisfies the conditions
of the theorem. Similarly every such disconnected graph corresponds to

a unique edge-identity. |

We can now use Theorem 5.2 to count the number of edge-identities,
and compare this number with the number of spanning subgraphs (i.e.,
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N 2 o3 s s s 7 8 9 10 11
-5 1
-4 1 3 7
-3 1 7 17 39
-2 1 1 3 15 33 83 202
-1 1 1 2 4 9 20 50 124 332 895
0 1 2 5 15 41 124 369 1132 3491
1 1 5 20 73 271 974 3507 12u87
2 1 4 22 110 515 2272 97177 40752
3 2 20 133 832 4683 24543 121470
4 1 14, 139 1181 8563 55703 331374
5 1 9 126 1460 13969 114550 828313
6 5 85 1581 20376 213530 1900732
7 2 64 1516 26675 - 362763 4012988
8 1l 40 1291 31423 562151 7811406
9 1 21 970 33377‘ 796325 14046888
Table 5.1
v(e,v), the number of graphs with no isolated vertices.
e~z 3 v s 6 7 8 9 10 11
=5 1 2
-4 1 2 5 12
-3 1 2 5 12 29 69
-2 2 5 11 27 62 152 373
-1 0 6 1y 36 89 229 599 1608
0 2 14 38 97 264 728 2084 6100
1 11 ; 32 87 247 716 2155 6694 21{81
2 20 62 192 584 1850 6022 20414 71358
3 117 396 1322 4528 16080 59331 226654
y 204 795 2873 10706 41135 165362 689930
5 351 1543 6163 24649 102057 444125 2019741
6 2938 2948 56087 247947 1158753 5709066
7 5466 26873 126624 596609 2963600 15676412
8 9982 545851 284228 1431433 7505618 42133036
9 18087 110380 632129 3435582 18979618 111838422
Table 5.2

e(v,e), the number

of edge-identities (see Theorem 5.2).
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S¢T ML SZ'T 92T 82°T €E'T  Tw'T . 4s'L  SL'T  60°Z  S9°C  6S°€  T8'S  €4°8  S°ST  0Z z
LET  LET  8E'T  BE'T  TnT  en'T  08'T  6S°T  CL'T 16T 122 9T  86'C  se'n g 24 1
WL 0STT ISTT eS'T ST 8S'T Z9°T 49T . SL'T  h8'T 46T €T'Z  4e°Z £5°C 87 0
LSTT 67T T9°T n9'T L9°T  69°T €L°T  9L°T  08°T  08°T S8°T 8L'T 08'T es'T §7 1 -
09°T  Z9°T 'L 89°T WL'T  mL'T  8L°T  08°T S8'T €8T 88T 08°T €8°T Lo°T z 1 z-
6S'T  T9'T  n9'T  99°T  89'T  69°T EL°T TL'T  LLT  TLT TL'T L9l z T e-
09°T  29°T  S9°T 99T 69°T 89°T EL°T 49°T TL'T L9l 4 1 -
€9°T  h9°T  89°T L9'T TL'T 49T TL°T 49T z T G-
L9°T  99'T  TL'T  L9'T TL°T  19°T z T 9-
ULt TLT L9t z T L-
T L9°1 z T 8-

z 1 6-
6T 8T L 9T ST hT €T zt T T . 8 L 9 5 4 <




103

graphs with no isolated vertices) with e edges.

The following three tables are taken from Kocay [12]. Table 5.1
counts the number of graphs with v vertices and e edges and no
isolated vertices. Table 5.2 gives the corresponding number of edge-
identities, and Table 5.3 gives the ratio of the two.

The interesting fact is that the ratio can be less than one. If
the ratio becomes small enough, does this mean that the reconstruction

conjectures are false?

We finish this section with a question related to enumeration.
It is well-known (see Doubilet, Rota, and Stanley [5]) that correspond-
ing to different enumerative systems there are different classes of
generating functions. Combinatorial operations on the sets of objects
being counted correspond to algebraic operations on the generating
functions. For example (see [5]) problems involving the natural
numbers with the usual order relation give rise to ordinary generating
functions. Problems involving subsets of a set correspond to exponen=-
tial generating functions,'and divisibility problems correspond to
Dirichlet generating functions. In terms of generating functions,
inclusion-exclusion becomes particularly simple. ‘

Since we are really using inclusion-exclusion in Theorem 4.4,
Corollary 4.7, and Examples 4.5 and 4.8, the following question seems

natural.

5.3 Problem. Is there a class of generating functions for which

subgraph counting becomes algebraic?

II. THE METHOD OF PARTIAL AUTOMORPHISMS

6. PARTIAL AUTOMORPHISMS AND PSEUDO-SIMILAR VERTICES

Let 6 and H be graphs with some "large" isomorphic subgraphs
gc 6 and h c H, where g = h. For example, G and H might be
reconstructions of each other, where g and h are isomorphic vertex-
deleted subgraphs: 6-u =z H-v; or 6 and H might be edge-reconstruc-
tions of each other, for which g and h are isomorphic edge-deleted
subgraphs: G-e = H-f.

let p: g~+h be an isomorphism. We want to embed 6 and H
into some larger graph I such that the isomorphism p can be extended
to an automorphism of I' . We make the following definition.

Definition. Let T be a graph, and let p be an isomorphism
between two subgraphs g and h of T. p is a partial automorphism
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of T if the igomorphism p : g + h can be extended to an auto-

morphism of TI.

The symmetry of I' will then force some of the structure of G
and H in the above situation.

This technique was first used in connection with pseudo-similar
vertices in a graph (see Godsil and Koecay [71).

Definition. Let u,v € V(G). If there is an automorphism
P € Aut G such that p(u) = v, then u and v are similar.

If u and v are similar vertices of G, say p(u) = v, then
G-u = G-v§ for p(G-u) = G-v . One purported "proof" of the reconstruc-
tion conjecture rested on the assumption that if G-u = G-v, then there
exists p ¢ Aut 6 such that p(u) = v (see Harary and Palmer [8]).

The falsity of this assumption is demonstrated by the following
famous graph, in which G-u = G-v but u and v are not similar.

. ALA

u v

Figure 6.1

Definition. Zet wu,v e V(G). If G-u = G-v but there exisis no
P € Aut G such that p(u) = v, then u and v are pseudo~similar

. /
vertices.

Why then, do pseudo-similar vertices exist? We can answer this
question with partial automorphisms.

6.1 Lemma. Let u and v be pseudo-similar vertices in a graph G,
and let p : G-v > G-u be an igomorphism. Then there exists a posttive
integer k such that pk(u) = V. '

Proof. First note that p maps V(6)-{v} onto V(G)-{u}. Con-
sider p(u). Either p(u) = v, or we can find p2(u). Either
p?(u) = v, or we can find p(u). We must eventually have pk(u) s v,
for some positive k, since P 1is one-to-one and onto, and V(G) is
a finite set. O

Note that in terms of the graphs 6, H, g, and h above, we
have 6 =H, g =6-v and h = G-u.

We denote the set {u,p(u),pz(u),...,pk(u) =v} by [u,v]. Notice
that it has a natural order specified by the mapping P-
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6.2 Theorem. Let u and v be pseudo-similar vertices in G. Let
p : G-v + G-u be an isomorphigm. Then G can be embedded as an induced

subgraph (i.e., vertez-induced subgraph) into a graph T for which:

(i) u and v are similar;
(ii) p 18 a partial automorphism of T.

Before proving Theorem 6.2, we notice that ‘part (ii) actually sub-
sumes part (i); for once p is extended to an. automorphism of I, it
will still satisfy pk(u) = v, by Lemma 6.1, thereby showing that u

and v are similar in T.

Proof of Theorem 6.2. Let V' = V(@) - [u,v]. Write u; = pi(u)
for i = 0,1,2,...,k, so that [u,v] = {“o’“x’uz""’“k}' Note that
u and v are similar in G[u,v] (the graph induced by [u,v]), since
the mapping ¥ : [u,v] » [u,v] defined by w(ui) = U g '
i=0,1,2,...,k, is an automorphism of Glu,v). But u and v are
pseudo-similar in 6, so G # G[u,v]. Therefore V' # Q.

Now p is an automorphism of G[V'] and so has finite period r
on G[V']. Add a sequence of £ new vertice§ Uy oYy ot s ool
until k¥2+1 is a multiple of r, and 2 2 k.

Extend p by defining p(uk) = Uy p(uk+‘) T Uy, soes
p(uk+z) = u,. Attach edges tO Uy, Uy, s cslpyy appropriately, so
that p acts as an automorphism of the new graph T so obtained.. This
adds no new edges amongst V(G), since £ 2 k. TFor let (uo,ui) e E(G).

Geometrically, this represents a chord of a circle.

The effect of p is to translate this chord in a clockwise direction.

Since & 2 k, this cannot create any new edges in G6[u,v] or GLV'I].
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The extension of p acts as an automorphism of I under which u
and v are similar. This completes the proof of the theorem. ]

It is now easy to see why u and v are pseudo-similar in . G.
They are similar in I, and to get G we have deleted a set
A = {uk+1,uk+2,...,uk+£} of consecutive vertices of an orbit of p
such that p(Avu{v}) = Av {u}.

We remark that the graph oI is not unique; for we can increase &
by any multiple of r and still get a graph satisfying these conditions.

Also it is sometimes not necessary to take & 2 k.

It is a simple exercise to apply this technique to the gfaph of
Figure 6.1 to get the following graph T.

Y

Figure 6.2

A catalogue of graphs with pseudo-similar vertices can be found

in Kocay [13].

6.3 Theorem. Let wu, v, Ps and 6 be as in Theorem 6.2. Let
V' = V(G) -[u,v]. Then [vt] = 8. :

Proof. We know that V' # Q. There are thus five main cases to
be considered.

Let ¢ : [u,v] > [u,v] be the automorphism of G[u,v] defined
in Theorem 6.2,

Case I. |[V'| = 1. Let V' = {a}. Then every u; ¢ [u,v] can
be taken adjacent to a. But then: (a)y, the product of ¥ and the
permutation (a) is an automorphism of @ taking u to v, a contra-
diction.,

Case II. |V'| = 2. Let V' = {a,b}. Then p acts as (ab) on
V', or we are reduced to Case I. We can assume that u, is joined to
one of a and b, but not both, for otherwise (a)(b)y ¢ Aut G.
Without loss of generality, take u, adjacent to a, but not to b.
Then u, 1is adjacent to b, but not to a, ‘ete.
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If k 1is even, then u; is adjacent to a but not to b. In
this case (a)(b)y e Aut G.

If k is odd, then U is adjacent to b but not to a. Then
(ab)y ¢ Aut G.

Case III. |V'| = 3. Let V' = {a,b,c}. Then p acts as (abe)
on V', for otherwise it would have a fixed point. GIV'] is either a
triangle or three independent vertices. In either case, Aut GLV'] = §,,
the symmetric group on V'. uj is joined either to one or two of a,
b, and c. By taking complements if necessary, we can take u, adjac-
ent to a only. Then u; is adjacent to b, and u, is adjacent to

c, etc.
If k = 0(mod 3), then (a)(becly ¢ Aut G.
If k = 1(mod 3), then (ab)(c)¥ « Aut G.
If k = 2(mod 3), then (ac)(b)y ¢ Aut G.
Case IV. |V'| = 4. Let V' = {a,b,c,d}. In this case p must

act either as (abed), or as (ab)(cd) on V'. By taking complements

if necessary we can suppose that u is joined to one or two of a, b,

o
c, and d.

(i) Suppose p acts as (ab)(ed) on 6G[V']. If u, is joined
only to one of a, b, ¢, and d, say a, then this case reduces to
Case II. If wu, is joined to two of a, b, c, and d, then we can
assume it is a and ¢, or a and d. Either possibility reduces to

Case II.

(ii) Suppose p acts as (abed) on GV']. Then GLV'] is one
of the following graphs, or their complements.

a b a b
0 0
0 [\
d c d c
Figure 6.3

In either case; Aut G[V'] 2 D,, the dihedral group on v,

Without loss of generality, we can assume that one of the follow-
ing three choices holds: uj is joined only to a; ug is joined only

to a and b; uj is joined only to a and c¢. In any case, we have

the following.
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If k = 0(mod 4), then (a)(c)(bd)y ¢ Aut G.
If kX = 1(mod 4), then (ab)(cd)y ¢ Aut G.

If k £ 2(mod 4), then (ac)(b)(d)y ¢ Aut G.
If k = 3(mod 4), then (ac)(bd)y e Aut G. .

Thus in every possibility, u and v are similar in G, not

pseudo-similar, a contradiction.

Case V. |V'| = 5. Let V' = {a,b,c,d,e}. In this case p must
act either as (abcde) or as (abc)(de) on V'. We can assume that

u, is joined to one or two of a, b, ¢, d, and e.

(i) Suppose that p acts as (abc)(de) on V'. It is then
easy to see that in G[V'], either there are no edges joining {a,b,c}
to {d,e} or all possible edges are present. Thus Aut G[(V'] factors
into’ (Aut G[{a,b,c}1) x (Aut G[{d,e}]). This then reduces to Cases II
and III.

(ii) Suppose p acts as (abecde) on V'. Then GIV'] 1is one

of: an empty graph; a complete graph; or a pentagon. In each case
Aut G[V'] 2 Dy, the dihedral group acting on V'.

If k = 0O(mod 5), then (a)(be)(ecd)y e Aut G.

If Xk E‘l(mod 5), then (ae)(bd)(c)y ¢ Aut G.

If. k = 2(mod 5), then (ac)(b)(de)y e Aut G.

If k = 3(mod 5), then (ad)(be)(e)y e Aut G.

If k 2 4(mod 5), then (ae)(bd)(c)y ¢ Aut G.

Thus in each case, u and v turn out to be similar, insteéd of
pseudo-similar. This completes thé‘proof of the theorem. &)

Note that |V'| = 6 is possible. This is the case of the graph

G of Figure 6.1.

Several properties of the degree sequences of graphs with pseudo-

similar vertices are discussed in Kocay [14].

7. PSEUDO-SIMILAR EDGES

A result analogous to Theorem 6.2 holds for pseudo-similar edges.

~ Definition. Let e,f e E(G). If there exists P € Aut G such
that p(e) = £, then e and f are similar edges of G.

Definition. Let e,f ¢ E(G). If G-e = G-f put e and f are
not similar tn G, then e and f are pseudo-similar edges.
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In the graph G of Figure 7.1 edges e and f are pseudo-
similar. In fact, so are vertices u and V.

Figure 7.1

7.1 Theorem. Let e and f be pseudo-similar edges in a graph G.
Let p : G-f + G-e be an igomorphism. Then G can be embedded as an

edge-induced subgraph into a graph T such that:

(i) e and £ are a{milar in T;
(i) p 18 a partial automorphism of T;
(i11) the edges of T\G are contained in the ovbit of e and f
under <p>, the group generated by P.
Proof. Let e = uv e E(G) and f = ab ¢ E(G). Note that u, v,
a, and b need not necessarily be four distinct vertices, and that p

is a permutation of V(G).

Since p 4is an isomorphism, we can show, as in Lemma 6.1, that
- oK1 - K2
{a,b} = p *{u,v} and {u,v} = p %*{a,b}

for positive integers k, and k,, since p must take edges to edges

and non-edges to non-edges. : .

Note that {a,b},p{a,b},pzla,b},...,pkz'l{a,b} is a sequence of
non-edges in G-f. If we add edges joining these pairs of vertices in
the graph G to get T, then 'p becomes an automorphism of T, for
which pkl(e) = f and pkz(f) = e, thereby proving the theorem. 0

Note that unlike pseudo-similar vertices, we can look at pseudo-
similar edges from two points of view. Instead of adding the edges
ab, pCab), p?(ab),..., to G to get T, we could have removed the
edges uv,pluv),p2(uv),..., to get I'', a subgraph of G, on which
p acts as an isomorphism. ‘
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8. RECONSTRUCTING BI-DEGREED GRAPHS

If G is a k-regular graph, then for any v ¢ V(G), 6-v has
exactly k vertices of degree k-1, i.e., there is only one way to
rejoin v to get a regular graph. Thus, regular graphs are reconstruc-
tible.

If 6 has only two degrees, k and &, where k 2 &, then the
deletion of a vertex v of degree k will leave a total of k vertices
of degrees k-1 or #-1, If & # k-1, there is only one way to rejoin
v. Thus it is natural to look at graphs with only two degrees, k and
k-1. We call such a graph a bi-degreed graph.

If k = 2, then 6 is a collection of paths, which is not very
interesting. Therefore we take k = 3. We look at several simple

examples.

If there is only one vertex v of degree two, and the rest have
degree three, then G-v has exactly two vertices of degree two, and G

is reconstructible.

Similarly, if there are two adjacent vertices, u and v, of
degree two then G-u has a vertex of degree one, and one of degree two.
Again € is reconstructible (see Figure 8.1), since it is well-known
that the degrees of the neighbours of a vertex are reconstructible.

u v

Figure 8.1

If u and v are not adjacent in G, then it is not in general
known whether G is reconstructible. However, much of the structure of
G can be determined in this case, for general k. This can be found

in Koecay [15].

We look now at the case when G has three vertices of degree
two: u, v, and z. Clearly we can assume that no one of these is
joined to both of the other two.

Consider the case when u is joined to 2z, but not to v. This

is illustrated in Figure 8.2.
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Figure 8.2

If @ is not reconstructible from G-u, then it must be that a
new vertex x is attached to G-u at z and v *to get H,
struction of G.

a recon-

Figure 8.3

We now have G-u = H-x. Consequently G-z = H-z if 6 and H
avre to be reconstructions of each other.

u

Figure 8.4

We can now use the method of partial automorphisms. Let
p : G-z + H-z Dbe an isomorphism.

8.1 - Lemma. plu) = x,
p'(W) = Vy .
ply,v} = plw,yl. » _ o

8.2 Theorem. Let G and H be as above. Then G = H.

Proof. By Lemma 8.1 there are two cases to consider.
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Case I. p(y) =y and plvl) = w,

Consider I = G v H.

. Figure 8.5

We have p : V(rl - {x,z}+> V(I') - {u,z}. Extend p to V(I) by
setting p(z) = z and p{x) = u. Then p € Aut. T, by Lemma 8.1. But
p acts on {u,v,w,x,y,z} as (y)(z)(wv)(ux). Therefore

G = I'-x = p(I'-u) = p(H),

so that G = H. _
Case II. p(y) = w and plv) = y.

Consider T = G v H + ux.

Figure 8.6

As in Case I, p : V(I) = {x,z}>V(T) = {u,z}. Extend P to w(I)
by setting p(x) = z and p(z) = u. Then p e Aut r. But p acts on
{u,v,w,%x,y,2} as (uxz)(wvy). Therefore

6 =T-x = p(P-u) = p(H),

or G = H. o ' o

We see that the isomorphism p extends to an’automorbhism of a
graph T which contains both 6 and H as subgraphs. The automorphism
of T guarantees that .G = H,

Note that we have only used the following information to recon-
struct G: the degree sequence of G; the vertex-deleted subgraphs
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G-u (= H-x), G-z, and H-z; and the isomorphism p : G-z + H-z.

In a more general situation, it is reasonable to assume that we
should need to consider several isomorphisms P1sP2s-++>Ppy between
several pairs of vertex-deleted subgraphs. The group of symmetries
generated by p;,Pzs---3Pp should then force most of the structure of
G and H.
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