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Abstract

We have learned that the butterfly factorizations that we
described in the January Bulletin of the ICA have appeared
in three other forms, and it is useful to give a brief descrip-
tion of these other forms. The earliest paper that we have
encountered is a paper on Room squares by Stinson and Wal-
lis that describes houses; their houses are structures equiva-
lent to butterfly factorizations with an additional constraint.
Chris Rodger has pointed out that butterfly factorizations are
equivalent to the symmetric Latin squares with holes of size
two that are discussed in detail in the book by Lindner and
Rodger. And Arrigo Bonisoli has sent us a copy of his paper
on excessive factorizations that makes an elegant connection
with ovals in projective geometries of odd order.

1 Introduction

In the January issue of the Bulletin, we presented a paper [4] on
butterfly factorizations, and we later enumerated these factorizations
for the case of the complete graph on 8 symbols in [5]. A butterfly
factorization of K8 is shown in Fig. 2. It consists of a central 1-factor
(shown in bold), called the body 1-factor, and four more pairs of
1-factors, called the left and right wings. In general, a butterfly
factorization of K2n consists of a 1-factor called the body 1-factor
and n pairs of 1-factors, the wings, corresponding to each body edge,
such that each pair of wings has exactly one edge of the body 1-factor
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in common. Taken together, the edges of the wings cover each edge
of K2n – each body edge is covered twice, and all other edges are
covered exactly once. Chris Rodger has kindly pointed out to us that
the butterfly factorizations that we have introduced are equivalent
to the symmetric Latin squares with holes of size two that have
been discussed briefly in [2] and in much greater detail in the book
by Lindner and Rodger [6]. Arrigo Bonisoli has pointed out the
connection with an earlier paper by Stinson and Wallis [7] in which
they introduced houses as a generalization of Room squares to the
case of squares of even side. Arrigo has also drawn our attention
to his paper [1] on excessive factorizations. So it seems desirable
to briefly summarize these different approaches that lead to related
results.

2 The Connection with Houses

The paper on Room squares [7] that is closely connected with but-
terfly factorizations is a very interesting paper by Stinson and Wallis
in which they define designs called “houses”. Houses are an analogue
of Room squares for the case of even sides, and they are defined as
follows.

A house is produced in a square of side n, where n is even, by
filling the cells of the square either with a blank or with an unordered
pair of elements from a set S of n symbols. This selection is similar to
that employed for Room squares except that the first two rows of the
square must contain the same one-factor F from pairs of elements of
S. All other pairs from S are placed in the rows and columns of the
square so that every row contains all elements of S, with no repeated
pairs, and every column contains all elements of S, with no repeated
pairs.

As an example for n = 6, we give a diagram of a house. The
special one-factor F is {12, 34, 56}, and it appears in rows one and
two. The connection with butterfly factorizations is obvious from
the diagram; the first two columns give the left and right wings of a
butterfly, the third and fourth columns give the left and right wings
of a second butterfly, and the last two columns give the left and
right wings of a third butterfly. Note that a house has the additional
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constraint that each row is also a one-factor of the set S.

12 34 56

12 34 56

35 16 24

46 15 23

45 26 13

36 25 14

Fig. 1, a six-by-six house

Stinson and Wallis give a fairly long construction proving that
houses exist for all even values of n greater than 4. Their proof uses
the starter-adder construction for some special values of n as well as
results on abelian groups. It then uses a recursion involving Room
squares and orthogonal Latin squares to get houses for further values
of n, up to 116. Finally it gets the entire spectrum for houses by re-
cursion from the values 4,6,8,...,116. The motivation for introducing
houses was from a construction for subsquares of Room squares on
which Stinson and Wallis were working.

While each house determines a butterfly factorization, it is not
known whether the converse is true.

3 The Lindner-Rodger Latin Squares

The Lindner-Rodger symmetric Latin squares with holes of size two
look very different from factorizations. So we will give an explanation
of the equivalence for the case n = 8; this will suffice to indicate the
general relationship between butterfly factorizations and the Rodger-
Lindner symmetric squares with holes of size two.

Suppose that we start with a butterfly factorization of the com-
plete graph on 8 symbols, say:

37 46 58 12 35 47 68
18 26 57 34 15 28 67
17 24 38 56 13 27 48
16 23 45 78 14 25 36

Fig. 2, a butterfly factorization of K8
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Now create a symmetric Latin square of side 8 by the following
algorithm. Corresponding to body 12, make a hole in positions (i, j),
where 1 ≤ i, j ≤ 2. Place the figure 1 in the cells (3, 7), (4, 6), (5, 8)
determined by the left wing of the first butterfly, and their three
mirror images (7, 3), (6, 4), (8, 5). Place the figure 2 in the cells
(3, 5), (4, 7), (6, 8) determined by the right wing of the first butterfly,
as well as their three mirror images (5, 3), (7, 4), (8, 6).

In the next step, corresponding to body 34, make a hole in
positions (i, j), where 3 ≤ i, j ≤ 4. Place the figure 3 in cells
(1, 8), (2, 6), (5, 7) and in their three mirror images; place the figure
4 in cells (1, 5), (2, 8), (6, 7) and in their three mirror images.

Follow the same procedure for the bodies 56 and 78. The result
is the following symmetric Latin square with four holes down the
principal diagonal. (We note that the holes could be filled in with
2× 2 latin subsquares, if desired.)

* * 6 8 4 7 5 3
* * 7 5 8 3 6 4
6 7 * * 2 8 1 5
8 5 * * 7 1 2 6
4 8 2 7 * * 3 1
7 3 8 1 * * 4 2
5 6 1 2 3 4 * *
3 4 5 6 1 2 * *

Fig. 3, a symmetric Latin square with holes of size 2

The reverse procedure is obvious. If we start from a symmetric
Latin square with holes of size two, such as the one just created,
then we can immediately write down the n/2 bodies by using the
positions of the holes. For the body ab, we get the left wing by
taking the names of the cells that contain symbol a; since each cell
appears twice in the forms (x, y) and (y, x), we need merely take the
pair (x, y). We get the right wing by collecting the names of the cells
that contain the symbol b.

Thus we have an exact correspondence between butterfly factor-
izations and symmetric Latin squares with holes of size two. To
speak biologically, the butterflies have metamorphosed into a sym-
metric Latin square with holes of size two. We note that there is
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a similar correspondence between 1-factorizations of K2n and sym-
metric latin squares with 2n on the diagonal.

4 The Excessive Factorizations of Bonisoli

Bonisoli defines an excessive factorization of K2n as a collection of 2n
1-factors such that every edge of K2n is covered either once or twice,
and furthermore, the edges covered twice form a 1-factor. Clearly
this definition includes all butterfly factorizations. However an exces-
sive factorization need not have a partition into wings. It is possible
that some 1-factors contain two or more edges of the body 1-factor,
and that some 1-factors contain no edges of the body 1-factor. Bon-
isoli proves the existence of cyclic excessive factorizations of K2n for
all n > 2. The proof is based on techniques similar to those used
by Hartman and Rosa [3] to construct cyclic 1-factorizations of K2n.
Some of the factorizations used are not butterfly factorizations. Bon-
isoli’s paper is also noteworthy for the interesting connection that it
makes with ovals in projective planes of odd order.

5 Houses and K8 Factorizations

There are two non-isomorphic butterfly factorizations ofK8, as shown
in [5]. A house for one of them appears in [7]. In fact, both factor-
izations have houses, as shown by the following diagrams.

23 46 78 15 28 34 67

18 35 47 26 17 38 45

14 25 68 37 16 24 58

12 36 57 48 13 27 56

15 26 37 48

15 26 37 48

23 67 18 45

46 28 35 17

78 34 25 16

47 38 12 56

14 58 36 27

68 24 57 13

Fig. 4, The factorization of K8 with automorphism group of order 48
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24 38 67 15 23 46 78

18 35 47 26 17 34 58

16 28 45 37 14 25 68

13 27 56 48 12 36 57

15 26 37 48

15 26 37 48

67 23 18 45

58 14 27 36

46 28 13 57

24 35 17 68

38 47 56 12

78 34 16 25

Fig. 5, The factorization of K8 with automorphism group of order 12

It is not known whether every butterfly factorization is contained
in a house.
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