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Abstract

There are two types of quadrangles in a projective plane, Fano
quadrangles, and non-Fano quadrangles. The number of quadrangles
in some small projective planes is counted according to type, and an
interesting configuration in the Hughes plane is displayed.

1 Fano Quads

Let P be a finite projective plane of order n ≥ 2, so that every point lies on
n+1 lines and every line contains n+1 points, there being n2+n+1 points
in total and n2 +n+1 lines in total. A quadrangle, which we abbreviate to
quad , is any set of 4 points, no 3 collinear, which then determines 6 lines in
pairs. If {A,B,C,D} is a quad, and AB,AC,AD,BC,BD,CD, are the 6
lines determined, then the diagonal triangle E,F,G, is the set of 3 points
determined by the intersections of opposite lines, namely E = AB ∧ CD,
F = AC ∧ BD, and G = AD ∧ BC. In case the 3 points E,F,G, are
collinear, we say that {A,B,C,D} is a Fano quad, because the 7 points
{A,B,C,D,E, F,G} and the seven lines described above form a Fano plane,
that is, a projective plane of order 2. Otherwise we say that {A,B,C,D} is
a non-Fano quad.

So a plane P which contains a Fano quad contains a subplane of order
2. The Fano plane can only be coordinatized by a field of characteristic 2.
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Therefore, if P is coordinatized by a field, P will contain no Fano quads
unless its field has characteristic 2. Conversely, if its field has characteristic
2, then every quad of P will be a Fano quad. In a field plane, all quads are
either Fano quads, or else all are non-Fano quads (cf [1]).

We can count the quads in a plane of order n. Let {A,B,C,D} be a
quad. There are n2+n+1 choices for A. Having chosen A, there are n2+n
choices for B. The line AB contains n + 1 points, and C can not be one
of them. So there are n2 choices for C. We now have 3 lines, AB,AC,BC,
containing together 3n points. So there are n2 − 2n+ 1 choices for D. The
total number of quads in P is therefore

Q = (n2 + n+ 1)(n2 + n)(n2)(n2 − 2n+ 1)/24 = n3(n3 − 1)(n2 − 1)/24

as each quad has been counted 24 times.

n 2 3 4 5 7 8 9

Q 7 234 2520 15500 234612 686784 1769040

2 The Plane of Order 4

The projective plane of order 4 is completely determined, up to isomor-
phism, by any of its quads. Let PP (4) denote any projective plane of order
4. Let A,B,C,D be a quad. Taking E = AB ∧ CD, F = AC ∧ BD,
and G = AD ∧BC, we have 7 points and 6 partial lines in PP (4), namely
ABE,CDE,ACF,BDF,ADG,BCG. Any 2 of these intersect in a point.
Therefore they have no more common points. Since each line of PP (4) con-
tains 5 points, there are 2 more points per line, giving exactly 12 more points
to complete these lines. We now have 19 points out of 21. If {A,B,C,D}
were a non-Fano quad, then EF,EG,FG would form 3 additional partial
lines of PP (4), each requiring 3 more points to complete. Since EF,EG,FG
must intersect each of the above 6 lines in exactly one point, we find that at
least one more point is required for each of EF,EG,FG, giving 22 points
in PP (4), a contradiction.
We conclude that all quads in PP (4) are Fano quads. Accordingly, EFG
forms an additional partial line. The 7 partial lines require 14 additional
points to complete. Call them {a, b, c, d, e, f, g, h, i, j, k, l,m, n}. This gives
all 21 points in total. Without loss of generality, the 2 remaining lines
containing A can be taken to be Acgkm and Adhln. The 2 remaining lines
containing B then become Bdeim and Bcfjn, without loss of generality.
The remaining 2 lines containing C and D can then be chosen as in Figure 1.
The lines containing E,F and G are then completely forced.
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Figure 1: A Fano subplane in PP (4)

Combinatorial argument for the uniqueness of PP (4) is given in reference
[2].

3 Fano Residuals

Let H be a plane of order n containing a subplane Q of order m. The
residual of Q is Q, obtained from H by deleting certain points and lines.
The m2+m+1 lines of Q each contain an additional n+1−(m+1) = n−m
points, giving a set U of (n −m)(m2 +m + 1) points. See Figure 2 where
this is illustrated for n = 9 and m = 2. The remaining n2 + n + 1 − (n −
m)(m2 + m + 1) − (m2 + m + 1) = (n − m)(n − m2) points which do not
occur on the lines of Q are called residual points. Call the set of residual
points R. Since |R| ≥ 0, we have (n −m)(n −m2) ≥ 0. This produces the
well-known result that a plane of order n can only have a subplane of order
m ≤ √

n.
Each of the m2 +m+ 1 points of Q occurs in an additional n−m lines

in H, giving an additional (n−m)(m2+m+1) lines. Each point of U must
occur in m2 of these lines, accounting for m2(n − m)(m2 + m + 1) points
out of n(n − m)(m2 + m + 1) total points on these lines. The remaining
(m2 +m+1)(n−m)(n−m2) points on these lines must be filled by points
of R. This means that each point of R occurs (n −m)(n −m2)(m2 +m+
1)/(n−m)(n−m2) = (m2+m+1) times each on these lines. Each residual
point must therefore occur in an additional (n + 1) − (m2 + m + 1) lines.
This leaves a configuration of (n−m)(n−m2) residual lines, each containing
n−m−m2 residual points, and (m2 +m+ 1) points of U .

The residual of Q is the configuration induced by the (n −m)(n −m2)
residual points and (n − m)(n − m2) residual lines. Each residual point
occurs n −m − m2 times on these lines. In case m = 2, we call Q a Fano
residual.

Remark: It is well-known that n = m2 is possible for a subplane of order
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Figure 2: A Fano residual in a plane of order 9

m in a plane of order n. However n = m2 + 1 is not possible, since the
residual would then have m2 −m+ 1 points each occuring 1 −m times on
m2 −m+ 1 lines. This would require m ≤ 1, which is impossible.

For example, if n = 4 and m = 2, the residual has (n − 2)(n − 4) = 0
points. If n = 8 and m = 2, it has 24 lines and 24 points, each occurring on
2 lines. If n = 9 and m = 2, the residual has 35 points and 35 lines, each
line containing 3 points.

4 The Plane of Order 8

The plane of order 8 has 73 points in total. The residual of a Fano quad
contains 24 points and 24 lines, each conaining 2 points. In the field plane,
these pairs in the residual define 8 triangles [3].

5 The Planes of Order 9

There are 4 planes of order 9; they are the field plane, the Hughes plane, the
Hall plane, and the dual of the Hall plane. The field plane and the Hughes
plane are both self-dual. The field plane contains no Fano quads. The other
planes contain both Fano quads and non-Fano quads. Let us start with the
Hughes plane H, which has 91 points and lines. Referring to the above with
n = 9 shows that a subplane must have order m ≤ 3, and it is known that H
contains a subplane isomorphic to PP (3) (cf [1]). Let Q be a Fano quad in
H; then Q may intersect the subplane PP (3). Note that Q∩PP (3) can not
contain 4 points, since PP (3) contains no Fano quad. Therefore Q∩PP (3)
contains 0, 1, 2, or 3 points. We have counted all the quads in H, Fano and
non-Fano, and tabulated them according to |Q∩PP (3)|. The results are as
follows.
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Figure 3: The 28 triples of the (3, 3)-configuration

|Q ∩ PP (3)| Fano quads non-Fano quads

0 129168 816426
1 84240 566280
2 16848 141804
3 5616 8424
4 0 234

total 235872 1533168

We consider the possible Fano residuals in the Hughes plane. There are
only 3 possible residuals, and they are all self-dual. They have automor-
phism groups of order 2, 6, and 1008, acting on the points. The residual
with a group of order 1008 is particularly interesting. It consists of a Fano
configuration, PP (2), and a self-dual configuration R with 28 points and 28
lines. The Fano configuration has a group of order 168, and R has a group
of order 6. The triples of the configuration R are listed in Figure 3, and
two different drawings of R as a projective (3, 3)-configuration are shown in
Figures 4 and 5. Several of the lines are drawn as circles, and several are
drawn as arcs. Each line contains three points. The outer circle is drawn
with each of its three points appearing twice, as this simplifies the drawing.
The lines through point 19 are shown separately to avoid cluttering the di-
agram. Point 19 is fixed by all automorphisms. The outer circle and point
19 are polar opposites.

The group of this configuration is generated by the two permutations

(1,7,4)(2,22,10)(3,12,8)(5,6,9)(11,24,14)(13,23,20)(15,16,25)(17,28,27)(18,21,26),
(1,4)(2,6)(3,12)(5,22)(9,10)(11,24)(13,20)(15,18)(16,26)(17,27)(21,25),

as can be seen from the drawing.

Definition 5.1 Given two subplanes Q1 and Q2 of a plane H, we say that
Q1 and Q2 are disjoint if they have disjoint sets of points and lines, and if
furthermore, the intersection of any line of Q1 with any line of Q2 (as lines
in H), is not a point of either Q1 or Q2.

We summarize the above paragraphs in a lemma.
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Figure 4: The (3, 3)-configuration R on 28 points

Lemma 5.1 The Hughes plane contains pairs of disjoint Fano subplanes.
The 28 points not contained in any line of either Fano subplane induce a
self-dual (3, 3)-configuration isomorphic to R.

An additional drawing of this configuration is shown in Figure 5.

In the Hall plane there are 362,880 Fano quads and 1,406,160 non-Fano
quads. The Fano residuals are all isomorphic. Each residual is a non-self-
dual (3, 3)-configuration on 35 points, with an automorphism group that has
order 6.

Lemma 5.2 Let H be a projective plane of order 9, containing a Fano
subplane Q1. Let R1 be the residual points of Q1. If H contains a Fano
subplane Q2 disjoint from Q1, then the points of Q2 belong to R1.

Proof Let H contain a disjoint Fano subplane Q2. Refer to Figure 2. By
5.1, the lines of Q2 must be lines of Q1, the residual of Q1. If Q2 contained
a point X 6∈ R1, then the lines of Q2 containing X would all intersect a line
of Q1 in X, contrary to 5.1. It follows that points of Q2 belong to R1.

Corollary 5.3 The Hall plane and its dual do not contain two disjoint Fano
subplanes.
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Figure 5: The (3, 3)-configuration R on 28 points

Proof Let H denote the Hall plane or its dual. If there were disjoint Fano
subplanes Q1 and Q2, then by 5.3, the points of Q2 must all be in R1. Each
line of Q2 must contain 3 points of R1. Since each line of Q1 contains 3
points of R1, a Fano subplane Q2 is easily recognized in a residual – the
incidence graph of Q1 would contain a connected component isomorphic to
the incidence graph of the Fano plane. But this does not occur in H or its
dual. This completes the proof.

Corollary 5.4 The Hughes plane contains a clique covering of K28 with 49
K4’s and 28 K3’s.

Proof Let H denote the Hughes plane. Let Q1 and Q2 be disjoint Fano
subplanes, as in 5.3. There are 35 residual points R1 with respect to Q1 (see
Figure 2). Of these 35 points, 7 are points of Q2. This leaves 28 points in
R = R1∩R2. The 35 lines of the residual Q1 each contain 3 points of R. Of
these, 7 belong to Q1. There remain 28 triples of points of R. This defines
the 28 K3’s. The lines of H containing 1 point of Q1 must also contain
exactly 1 point of Q2. They will also each contain exactly 4 points of R.
There are 49 such lines. This defines the 49 K4’s. Together the K3’s and
K4’s contain every pair of K28 exactly once.
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