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Abstract

Grünbaum recently demonstrated the existence of a non-
hamiltonian, 3-connected n3 configuration, with n = 25. The
configuration is based on the Georges graph. He showed that
the configuration can be coordinatized in the real plane, such
that all lines can be drawn as straight lines. In this article, we
show that the configuration has in fact a coordinatization with
rational coordinates. This supports Grünbaum’s conjecture
that every configuration which has a real coordinatization also
has a rational coordinatization.

1 Introduction

In a recent article [2], Grünbaum demonstrated the existence of a
non-hamiltonian, 3-connected n3 configuration, with n = 25. The
configuration is based on the Georges graph [1]. Grünbaum also
showed that the configuration can be coordinatized in the real plane,
so that all lines can be drawn as straight lines. The proof was exis-
tential, in the sense that it was based on the continuity of the reals
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Figure 1: The Georges graph

– it was not shown how to actually construct the coordinatization.
In this article, we use determining sets to show that the configura-
tion has in fact a coordinatization with rational coordinates. This
supports Grünbaum’s conjecture that every configuration which has
a real coordinatization also has a rational coordinatization.

The Georges graph is shown in Figure 1. It is a 3-regular, bi-
partite graph, of girth 6, on 50 vertices. It follows that it is the
incidence graph of a 253 configuration. It is also non-hamiltonian.
The bipartition consists of vertices 1 . . . 25 (the points) and 26 . . . 50
(the lines). The vertices representing points in Figure 1 have the
same numbering as in [2].

We wish to assign rational coordinates in the real plane to the
points 1 . . . 25 so that the lines 26 . . . 50 are straight lines. We will
use homogeneous coordinates (x, y, z), and construct integer coordi-
nates in the projective plane. Once coordinates have been assigned to
collinear points Pi and Pj , this uniquely determines the line contain-
ing them – it will have coordinates Pi × Pj ; and if coordinates have
been assigned to intersecting lines `i and `j , this uniquely determines
the point of intersection – which will have coordinates `i × `j . Thus,
given the coordinates of a collection of independent points and lines,
this will determine the coordinates of dependent lines and points,
which will in turn determine other points and lines, etc. Following
Sturmfels and White [7, 8], we will call this a construction sequence
for a configuration, since a drawing of the configuration can be con-
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structed by assigning coordinates to the independent points and lines,
and then calculating the coordinates of the dependent points and
lines, in this order. A minimal set of points and/or lines whose co-
ordinates uniquely determine the coordinates of all points and lines
in a configuration is called a determining set [3]. It was proved in [3]
that if a single incidence is removed from an n3 configuration, then
the resulting configuration always has a determining set. See [3, 4]
for more information on determining sets in n3 configurations.

Let G denote the Georges graph (Figure 1). It is the incidence
graph of a 253 configuration that we will call the Georges config-
uration. Remove the incidence between point 2 and line 42 (see
Figure 1), and call the resulting configuration G′. A determining
set and construction sequence for G′ are shown in Figure 2. The
vertices representing points are shaded black, the vertices repre-
senting lines are shaded white. This determining set was found
by the Groups & Graphs software [5] (which can be downloaded
from http://www.combinatorialmath.ca). Let Pi denote the coordi-
nates of point i, (1 . . . 25), and let `i denote the coordinates of line i
(26 . . . 50). The determining set consists of vertices {2, 4, 6, 9, 11, 23,
26, 30, 33, 39, 41, 48, 28, 46}, which appear on the bottom of Figure 2.
Arrows are drawn on the edges of the incidence graph to indicate
which points and lines determine which others. For example, points
2 and 4 in the determining set determine line 27. Lines 27 and 41 to-
gether determine point 1, etc. Notice that line 42 is is the last object
in the construction sequence, and that it is determined by points 3
and 5.

Any three non-collinear points in the real projective plane can be
mapped to any other three, by a linear transformation. Therefore
we are free to take P4 = (1, 0, 0), P11 = (0, 1, 0), and P9 = (1, 0, 1).
Refer to Figure 2. We can also take the `41 = (1, 1, 0). We want
to determine P2 so that P2 · `42 = 0. This will ensure that P2 and
`42 are collinear. Therefore we set P2 = (u, v, w), and attempt to
determine integer values u, v and w such that P2 · `42 = 0. The
construction sequence implicit in the directed graph of Figure 2 give
us the following starting values:
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Figure 2: A construction sequence for G′.
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point or line coordinates definition
P2 (u, v, w) ∗
P4 (1, 0, 0) ∗
P11 (0, 1, 0) ∗
P9 (1, 0, 1) ∗
`41 (1, 1, 0) ∗
`27 (0, w,−v) = P2 × P4

`37 (−w, 0, u) = P2 × P11

`43 (0,−1, 0) = P4 × P9

`38 (1, 0,−1) = P11 × P9

P1 (v,−v,−w) = `27 × `41

P10 (u, 0, w) = `37 × `43

`47 (−vw,−w(u + v), uv) = P1 × P10

Table 1: The coordinates of some points and lines

Elements of the determining set are marked with ∗ in the defini-
tion column. Their values can be chosen arbitrarily, subject only to
the following conditions:

1. unwanted incidences are not allowed, ie, Pi · `j = 0 if and only
if Pi is incident on `j ;

2. distinct points (lines) must have inequivalent coordinates; Pi

and Pj are equivalent if there is a non-zero constant λ such
that Pi = λPj .

In the following table, values have been arbitrarily assigned to the
remaining points and lines in the determining set. They have been
chosen to be as simple as possible, and still satisfy the conditions (1)
and (2). The values of the remaining coordinates are then calculated
via the construction sequence. When coordinates are calculated by
means of a cross product, eg, Pi = `j×`k, if the resulting coordinates
of Pi have a common integer factor, then Pi is reduced by that factor.
We are also free to multiply Pi by −1, if that is convenient.

Observe that u, v, w 6= 0, since if v or w were 0, then P2 · `47 = 0,
which is not possible; if u were 0, then P2 · `29 = 0, also a contradic-
tion.
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Notice that Figure 2 shows that P12, `50, P22, `40, P7, `34, P5 and
`42 are the only remaining coordinates that depend on u, v, w.

point or line coordinates definition
P6 (0, 1, 1) ∗
`45 (0,−1, 1) = P4 × P6

`29 (1, 0, 0) = P11 × P6

P3 (1, 1, 1) = `38 × `45

`33 (1, 1, 1) ∗
P17 (1,−1, 0) = `41 × `33

`39 (2, 1, 1) ∗
P14 (1,−1,−1) = `41 × `39

P12 (−uv − uw − vw, v(2u + w), w(2u + v)) = `47 × `39

P23 (1, 1, 0) ∗
`50 (−w(2u + v), w(2u + v),−3uv − uw − 2vw) = P12 × P23

`30 (1,−2, 0) ∗
P19 (2, 1,−3) = `33 × `30

`48 (1, 2, 1) ∗
P13 (−1,−1, 3) = `39 × `48

P8 (0,−1, 2) = `29 × `48

`44 (1,−2,−1) = P9 × P8

`49 (3, 3, 2) = P17 × P13

P18 (4, 2,−9) = `30 × `49

`26 (1, 2, 4) ∗
P16 (2,−3, 1) = `33 × `26

`32 (25, 22, 16) = P18 × P16

Table 2: The coordinates, continued

Some words about `28 and `46 are necessary. These lines are part
of the determining set, but they are constrained to be incident on
P23, ie, `28 · P23 = 0 and `46 · P23 = 0. Some experimentation was
involved in choosing their coordinates, so as to satisfy conditions (1)
and (2) above. A number of other choices of their values are also
possible.
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point or line coordinates definition
`28 (1,−1, 4) ∗
`46 (1,−1, 3) ∗
P25 (−8,−4, 1) = `30 × `28

P15 (−12, 0, 3) = `28 × `26

P24 (−82, 59, 47) = `32 × `46

`31 (−247, 294,−800) = P25 × P24

P20 (694, 47,−197) = `31 × `26

`35 (7, 211, 75) = P20 × P19

P21 (354, 27,−109) = `35 × `46

`36 (27, 82, 108) = P21 × P15

P22 (246uv + 298uw + 272vw, = `50 × `36

−81uv + 189uw + 54vw,
−218uw − 109vw)

`40 (81uv − 407uw − 163vw, = P22 × P14

246uv + 80uw + 163vw,
−165uv − 487uw − 326vw)

P7 (576uv + 1054uw + 815vw, = `40 × `48

−246uv − 80uw − 163vw,
−84uv − 894uw − 489vw)

`34 (−162uv + 814uw + 326vw, = P7 × P6

−576uv − 1054uw − 815vw,
576uv + 1054uw + 815vw)

P5 (1728uv + 3162uw + 2445vw, = `34 × `44

414uv + 1868uw + 1141vw,
900uv − 574uw + 163vw)

`42 (243uv − 1221uw − 489vw, = P5 × P3

414uv + 1868uw + 1141vw,
−657uv − 647uw − 652vw)

Table 3: The remaining coordinates

The coordinatizing polynomial is given by P2 · `42, which must
equal zero. This is a homogeneous cubic polynomial P (u, v, w) =

243u2v−1221u2w+414uv2+722uvw−647uw2+1141v2w−652vw2 = 0

In order to find integral solutions to this equation, we use some
ideas from elliptic curve theory (see [6]). Experimentation with P2
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shows that if we set P2 = (1,−2,−2) then an unwanted equivalence
`47 = `39 = (2, 1, 1) arises, which results in P12 = (0, 0, 0), which in
turn results in P2 ·`42 = 0. Hence (u, v, w) = (1,−2,−2) is an integral
point on the polynomial P (u, v, w). The tangent line to the curve at
that point has equation 652u + 407v − 81w = 0. We solve this for v,
then substitute into P (u, v, w) to obtain a cubic in u, w. This cubic
is divisible twice by 2u + w, since (1,−2,−2) is on the curve and
on the tangent line. The result is 7734221u − 3886443w = 0. The
corresponding solution is (u, v, w) = (3886443,−4686705, 7734221).
If we substitute these numbers into Tables 1, 2 and 3, we obtain the
following numeric values for the points and lines whose values were
previously given in terms of u, v, w.

point or line coordinates
P2 (3886443,−4686705, 7734221)
`27 (0, 7734221, 4686705)
`37 (−7734221, 0, 3886443)
P1 (−4686705, 4686705,−7734221)
P10 (3886443, 0, 7734221)
`47 (1305782643, 1689708754,−677626709)
P12 (174859,−520745, 171027)
`50 (−57009, 57009, 231868)
P22 (−12856204, 12417408,−6213981)
`40 (−114303,−116995, 2692)
P7 (−122379, 116995,−111611)
`34 (76202, 40793,−40793)
P5 (−40793, 11803,−64399)
`42 (−38101, 11803, 26298)

Table 4: The final numeric coordinates

In order to confirm that conditions (1) and (2) are satisfied by
all points and lines, it is best to use a computer. We summarise this
with

Theorem 1.1 The Georges configuration has a coordinatization by
rationals.
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