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ABSTRACT

This is a self-contained exposition on how to write isomorphism programs. It is
intended for people who want to write isomorphism programs for combinatorial
structures, such as graphs, designs, digraphs, posets, etc.

1 INTRODUCTION

This is an expository article aimed at graduate students or advanced under-
graduates who want to write isomorphism programs, whether for graphs,
designs, set systems, posets, or other combinatorial structures. The em-
phasis is on programming techniques. The program presented here is based
on graphs, but the principles of the algorithms for other combinatorial
structures are very similar. The most powerful general purpose graph iso-
morphism program currently available is without doubt B.D. McKay’s C-
language program Nauty [23]!. See McKay [24] for a mathematical de-
scription of the algorithm used. The prototype of Nauty was the Fortran
program GLABC, which formed a part of McKay’s Ph.D. thesis [22]. Sev-
eral other authors [10,19,21] have independently written general purpose
graph isomorphism programs, including Kocay, whose Groups & Graphs
[18)2 package contains a highly efficient Pascal graph isomorphism program.

This work was supported by an operating grant from the

Natural Sciences and Engineering Research Council of Canada.
!Nauty is available via anonymous ftp from dcssoft.anu.edu.au, in /pub/nautyl9.
2Groups & Graphs is available at ftp.cc.umanitoba.ca in the directory /pub/mac.
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These programs are different implementations of very similar algorithms.
To the best of my knowledge, all existing general purpose graph isomor-
phism programs are based on the method of partition refinement. This is
the most efficient method known to date. These algorithms are currently
exponential in the worst case, but in practice are extremely efficient for
most graphs. It may be possible to develop them into general polynomial
algorithms. A polynomial algorithm for all graphs seems a very real possi-
bility. One reason for this article is to make the algorithm and programming
techniques more accessible to a wide audience. There is ample room for re-
search into graph isomorphism algorithms. As will be seen, the programs
are quite complicated and subtle. This is something of an obstacle, but not
an insurmountable one.

In 1980, Furst, Hopcroft and Lux [12] discovered a sub-exponential algo-
rithm for computing the automorphism group of a trivalent graph. It was
later refined and improved by Galil, Hoffman, Lux, Schnorr, and Weber [14]
into a O(n® log n) algorithm. This is a very efficient algorithm, based on
finding block systems in a 2-group. It does not extend very well to graphs
of higher valence (see Luks [20] and Hoffmann [16]). It seems to me that
partition refinement offers more hope for a general polynomial-time algo-
rithm. There are also a number of methods based on the linear algebra of
the adjacency matrix (eg., see Bennett and Edwards [4]). These often work
well for showing that two graphs are not isomorphic, but do not work for all
graphs. In [15], Gismondi and Swart attempted to transform the graph iso-
morphism problem into a linear program and use the simplex method. The
technique did not work, because it could not guarantee integral solutions,
but uses some very interesting ideas.

There is a vast literature on graph isomorphism. We do not attempt to
survey it here. For more information, see the bibliographies in {11] and
[3]. A great many algorithms for graph isomorphism have been presented,
mostly based on partition refinement. To the best of my knowledge, Nauty
out-performs them all. This is an indication of the power of partition refine-
ment and the importance of programming techniques. Nevertheless, even
Nauty takes exponential time on certain difficult graphs. Development of a
polynomial algorithm will require some new ideas and techniques. Corneil
and Goldberg have presented a non-factorial algorthm in [9]. They use
partition refinement with sections in order to prove that the algorithm is
sub-factorial. Since most graphs don’t seem to have sections, this means
that existing algorithms based on partition refinement are already sub-
factorial. It may be possible that the notion of sections can be extended to
give a faster isomorphism algorithm.
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2 PARTITION REFINEMENT

Let G be a graph. We assume that G is undirected, with no loops or
multiple edges, but the algorithm can be fairly easily extended to apply
to directed graphs and/or non-simple graphs and/or designs. The vertex
and edge sets of G are V(G) and E(G). Each edge is an unordered pair of
vertices. If u,v € V(G), we write the pair {u,v} as uv. We write v — v to
indica te that u is adjacent to v. Since G is undirected we also have v — wu.
This can also be expressed as uv € E(G).

The graph isomorphism program we are describing produces a certificate
for G, written cert(G). Two graphs G and H are isomorphic if and only
if they have equal certificates, cert(G) = cert(H) (see Read and Corneil
[26]). One way of defining a certificate (the commonest way) is this. Let
G have n vertices. A(G), the adjacency matrix of G, is a symmetric ma-
trix with a diagonal of zeroes. Changing the ordering of the rows and
columns will change the matrix A(G). The upper triangle contains (’2‘)
bits which can be written as a single binary number, row after row, or col-
umn after column. Each ordering of V(G) defines a bit string in this way.
Fig. 1 shows a graph G and an adjacency matrix A(G). The bit string
defined by taking the upper triangle of A(G) column by column is then
1110010011010011000111001001. It is more concise to interpret these bit
strings as character strings, by grouping them 6 or more bits at a time.

These bit strings can be ordered lexicographically, and the smallest (or
largest) can be taken as cert(G). We say that cert(G) corresponds to the
smallest adjacency matriz for G. When defined in this way, cert(G) is obvi-
ously independent of the original ordering of the vertices. The disadvantage
is that there are n! different orderings of V(G). There are several ways of
reducing this to something more manageable. We describe one way. If G
contains vertices of different degree, we can first sort the vertices by degree,
and consider only those orderings of V(G) which preserve the degree of the
vertices. This idea can be extended as follows.

An ordered partition II of V(G) is a list of cells, Il = (C1,C2,...,Cp),
where each cell C; is a set containing one or more vertices, U;C; = V (G),
and C; N C; = @, for i # j. The degree sequence of G defines an ordered
partition of G. A partition II is said to be equitable or stable if whenever
u,v € Cy, v and v are both joined to the same number of vertices of C;, for
all j = 1,2,...,p. If II is not stable, then we can refine it, as defined by
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*1100011
1100100
11*11000
001*1001
0011*110
01001*10
100011%*1
1001001 *

5

Figure 1 A graph and its adjacency matrix

the following algorithm. We assume that there is a global array Degree[ ],
such that Degree[v] is a cell invariant for II. Initially we can assume that

Degree[v] =0, for all v =1,2,...,n.

Refine(Il: partition)
{Il is an ordered list of cells}
{each cell of II is initially marked uncounted}

Begin
C := first cell of II
repeat

{first count the adjacencies to cell C'}
for each u € C do
for each v — u do
Degree[v] := Degreefv] + 1
mark C counted
for each cell C’ do begin
sort the vertices of C’ by Degree{]
if Degree[] is not constant on C’ then
split C’ into new cells of equal degree
all new cells created are marked uncounted
end
C := an uncounted cell of II
until II is stable
End {Refine}
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For example, let us start with the unit partition Ilp for the graph of Fig. 1.
This is the unique partition with a single cell Co=1{1,2,3,4,5,6,7,8}. The
Refine algorithm first takes C := Cp and counts the cell C. This has the
effect of computing the degree of each vertex of G. The vertices of C are
then sorted by degree. C contains vertices of degree 3 and 4. The next
step sorts C' and splits it into two cells, C; = {2,4,6,8} of degree 3, and
Cay = {1,3,5,7} of degree 4. So we now have II; = (C1, C2), where every
v € C; has Degree[v] = 3 and every v € Cy has Degree[v] = 4. In order
to determine that II; is in fact equitable, the repeat loop runs two more
iterations. It first takes C := C; and counts this cell. Each v € C; is
adjacent to one vertex of C1 and two vertices of Cy. Since Degree[] is
accumulative, the stored degrees of the vertices of C; will increase from
3 to 4, and those of Cy will increase from 4 to 6. Since C; and C» still
have constant degrees, there is no splitting of the cells at this point. C; is
marked counted. The algorithm then takes C := Cjy and counts it. Each
v € C4q is adjacent to two vertices of C1 and two vertices of C3. The stored
degrees of the vertices of Cy will increase from 4 to 6, and those of Cy will
increase from 6 to 8. Again there is no splitting of any of the cells. C»
is now marked counted. Since every cell of II; is counted, the algorithm
deduces that the partition is stable, and the repeat loop terminates with
an equitable partition. Thus an equitable partition is stable with respect
to refinement.

The algorithm chooses C as the first uncounted cell of II. It is obvious that
with a specific choice like this, the equitable partition constructed will be
independent of the original ordering of the vertices. In general, many or-
dered partitions correspond to the same unordered partition. If the cells C
chosen to be counted are selected by a different rule, a different ordered par-
tition will result. However it will always correspond to the same unordered
partition. See Mathon [21] for a proof. A sketch of the proof follows. The
set of all unordered partitions of V forms a partially ordered set. II is
smaller than II’ if it is finer than II'. The set of partitions has a unique
minimum element, the discrete partition, and a unique maximum element,
the unit partition containing only one cell. Given any two partitions II and
I, there is a unique partition II A II’ which is the largest partition smaller
than both IT and IV'. It is obtained by forming all pairwise intersections of
the cells of II and II’. There is also a unique partition II V II’ which is the
smallest partition larger than both II and IT'. It is obtained by taking the
unions of intersecting cells of I and II'. See Fig. 2. If we formed a bipartite
graph of the cells of IT versus the cells of II’, and joined intersecting cells,
then the cells of IT vV I’ would correspond to the connected components
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of this graph. The cells of II A IT' would correspond to the edges of this
bipartite graph.

Invir
1

X
) AT

Figure 2 Partitions form an ordered set

Lemma 2.1 Suppose that Il and I’ are equitable. Then so is IV IT.

This can be proved by counting adjacencies using the diagram above. Note
however, that II A II' is not always equitable. See McKay [25]. Now con-
sider the refinement procedure in which a non-equitable partition II is to
be refined. A cell C of II is selected and counted. This causes some of
the cells of II to split into two or more cells. Let IIc be the equitable un-
ordered partition obtained after refining. If the refinement were begun with
another cell C’ instead of C, an equitable unordered partition Il would
be obtained. If II¢ # Il¢/, then Il¢ V Il would be an equitable partition.
Since II¢ < I and Il < 11, it follows that Mo V I < II. But this is
impossible. Thus for any unordered partition II there is a unique largest
equitable unordered partition II, that is smaller than II. There are a num-
ber of equitable ordered partitions that correspond to IT,. The refinement
algorithm will construct one of them. It must choose the cell C' to count
by the same rule each time, in order to ensure that the ordering of II, that
it constructs is unique.

The termination of the loop “repeat ... until II is stable” requires that the
program can recognize when a partition is stable. This will occur if every
cell has been counted, and no further splitting of any cell has taken place.
Whenever a new cell is created by splitting C’, the new cells are marked
uncounted. The program selects the cell C to count as an uncounted cell
of II. Consequently every cell will eventually be counted, and the loop will
terminate only when no further splitting of cells has occurred. Therefore
the repeat loop will terminate only when II is equitable. So one way to
recognize an equitable partition is to continue until every cell has been
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counted. However one must keep in mind that eventually the isomorphism
algorithm will construct a discrete partition of V(G), that is, a partition
whose every cell contains only one vertex. A discrete cell cannot split
any further. Therefore it is a good idea to remove discrete cells from the
partition after they have been counted, to avoid duplication of work. We
will say more about discrete cells later. It is also possible that when a
cell ¢’ is split, that it splits into discrete cells. The entire partition II can
become discrete at such a step.

When this happens, there is no point in continuing to count the uncounted
cells of II, for a discrete partition must be equitable. So the criteria for
detecting when II is stable are:

1. if there is no uncounted cell C, then II is stable;

2. if I1 is discrete, then it is stable.

The first condition is very easy to detect. The second condition is not so
easy. When the cell C’ is being sorted according to Degree[v]|, where v € C’,
the sorting algorithm can detect if all degrees of C’ are distinct. If so, it can
mark C’ discrete, instead of actually splitting C’ into new cells. A counter
of the total number of vertices in discrete cells can be maintained. When
it equals the number of vertices, we know that II is discrete.

Data Structures

The Refine algorithm is tricky to program. The actual program will depend
on the data structures chosen. In Groups & Graphs, I have used the follow-
ing data structures. A graph is stored as an array of linked lists. For each
vertex u, Graphfu] denotes the list of vertices adjacent to w. This allows
the loop “for all v — u do” to be programmed efficiently. An adjacency
matrix is also stored, since it is needed for comparing different orderings of
V (G) when finding cert(G). The current ordering of the vertices is stored
by an array P[1..n]. I have represented an ordered partition as a linked list
of cells, where each cell is a record as follows.

CellPtr = "Cell

Cell = record
FirstPt, LastPt: Integer
Counted, Discrete: Boolean
NextCell: CellPtr

end
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FirstPt and LastPt are pointers into the array P[-]. The vertices in each cell
are stored as contiguous entries in the array. Counted indicates whether
the cell has been counted, and Disrete indicates whether a cell is composed
of one or more discrete cells. NextCell is a pointer to the next cell in the
partition.

This is a very convenient way to represent graphs and partitions, but it does
have certain disadvantages. The main one is that a typical graph isomor-
phism calculation computes many thousands of partition refinements, and
the constant creation and deletion of cells requires a great deal of memory
management, which can be slow. Partition refinement is the main opera-
tion which takes place in graph isomorphism. Most of the time required is
consumed by partition refinement. Therefore it must be made as fast as
possible. McKay [22,24] has stored a graph as an adjacency matrix in such
a way that each row is a packed bit-vector. This means that counting the
cells in a partition can be accomplished using full-word boolean operations
on the rows of the adjacency matrix. This counts all vertices adjacent to
a vertex u in a constant number of steps (up to a maximum size). This
gives a significant increase in speed. A difficulty which then arises is that
it becomes more difficult to compare two orderings, since the adjacency
matrix has been packed into bit vectors. On a parallel computer, partition
refinement could take place much faster.

The algorithm Refine(II) accepts an ordered partition IT and transforms it
into an equitable ordered partition II'. Viewed as unordered partitions, IT’ is
the largest equitable partition which is less than or equal to II. The program
assumes that initially Degree[v] is a cell-invariant of IT (Degree{v] = 0 the
first time Refine is called). When it terminates, II has been transformed
into an equitable partition I, so that Degree[v] will still be a cell-invariant
of II'. This feature is significant, because it means that the program does
not need to re-intiallize Degree[v] to 0. This saves an enormous amount of
execution time.

Complexity

Suppose that a cell C € II is to be counted, where |C| = m. If we assume
that the graph is stored as adjacency lists, the number of steps required
to count C is proportional to the sum of the degrees of the vertices of C.
All cells in II must then be sorted according to the array Degree[]. In
theory a radix sort could be used to sort the cell in time O(m), since the
degrees are in the range 1..m. However in practice this is not very useful,
since it requires setting up m buckets, one for the vertices of each degree.
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After the vertices have been placed in buckets, the buckets must be linked
together, and this requires m steps, even if many of the buckets are empty.
For example, m could be around 100, and there may be only 3 different
degrees. Nevertheless, all 100 buckets would have to be created. Every
vertex would have to be moved twice, once into a bucket, and once into its
proper position. All 100 buckets would have to be tested to see if they are

non-empty.

When a partition becomes equitable, all vertices in it have the same degree.
It is extremely helpful to have a sort algorithm that only makes one pass
through the vertices if they are already in order, leaving them unmoved.
I have found that a simple insertion sort works very well for most graphs
up to reasonable size. For larger graphs the quadratic complexity of the
insertion sort starts to become noticeable. A very useful technique is to
use a quicksort, with a cut-off M of around 16 to 32. When the number
of vertices to be sorted is less than M, the quicksort procedure uses an
insertion sort to order the vertices. When the number is M or more, a
pivot is found and a recursive call is made. See Weiss [27] for an excellent
implementation of quicksort.

Quicksort has an average complexity of O(n log n). Each time a cell is split
the number of cells increases by at least one. If the number of vertices is n,
the maximum number of splittings that can take place is n, giving a worst-
case average complexity of O(n? log n) for the sorting stages of Refine.
(The radix sort gives a theoretical worst-case complexity of O(n2), but it
is not effective in practice.) If the graph has ¢ edges, the number of steps
needed to count a cell C is at most O(e). If Il is already equitable, the total
number of steps required to detect this is 2¢, by counting every cell. Since
there are at most n splittings, the total number of steps used in counting
cells is at most O(ne). Thus refinement is fairly efficient. As mentioned
above, it is the single most time-consuming part of the algorithm. In order
to make a polynomial graph isomorphism algorithm, a way must be found
to reduce the number of discrete partitions to a polynomial number.

The Automorphism Group

The automorphism group of G consists of the set of all permutations of
V(G) that leave E(G) invariant set-wise. It is denoted Aut(G). If 7,7 €
Aut(G), the image of vertex v under = is denoted v™. Permutations are
composed from left to right, so that ™" indicates the image of v under
the product 77 (first «, then 7). A cell C of a partition II is fized by
Aut(G) if C™ = C, for every m € Aut(QG), that is, = maps every element



This article appeared in Computational and Constructive Design Theory, edited by W.D.
Wallis, Kluwer Academic Publishers, 1996.

144 CHAPTER 6

of C to an element of C. If 1 = (Cy,Cy,...,C,), then II™ denotes the
ordered partition whose cells are (C{,C7, ..., C7). The connection between
partition refinement and the automorphism group is the following.

Lemma 2.2 Let Ily be a partition of V(G) such that Aut(G) fires every
cell of Ilg. Let II be obtained from Ilg by refinement. Then Aut(G) fizes
every cell of II.

Proof. The proof is by induction on the number of iterations of the repeat
loop. Initially all automorphisms fix every cell of IIg. On each iteration a
cell C is counted. The vertices of each cell C’ are then sorted according to
the number of adjacencies they have to C, and C’ may be split into two or
more new cells. If # € Aut(G) maps u € C to v € C, then 7 also maps the
vertices adjacent to u to the vertices adjacent to v. So 7 fixes every new
cell split from C’. It follows that = fixes every cell of TI.

Since the unit partition is always fixed by Aut(G), for every graph G, we
can always take Ilp to be the unit partition initially, and refine it to an
equitable partition II. If H is any graph isomorphic to G and the same
refinement procedure is applied to H, then any isomorphism from G to H
must map II, cell by cell, to the corresponding partition of H. The number
of such mappings is no longer n!, but [T3_, |C;|!, where Il = (Cy, ..., Cp).
A TH-ordering of G is any permutation of V(G) that fixes every cell of II
setwise. The number of M-orderings is [[?_; |C;|!. We could then define
cert(G) as the smallest adjacency matrix over the set of Il-orderings of
V(G). For example, if we compute Refine(Ilg) for the graph of Fig. 3, we
find that the resulting equitable partition is discrete. This uniquely defines
the certificate for G.

Figure 3 A graph with discrete partition
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3 STABILISING VERTICES

If G is a regular graph, then the unit partition is already equitable, and re-
finement will produce no change in it. A number of recursive techniques can
be used to reduce the number of orderings of V (G) that must be considered
in order to compute a certificate. The most common is vertex-stabilisation.
Let II be a non-discrete equitable partition of G. We can assume that II
has no discrete cells. Let ' be a subgroup of Aut(G) such that T fixes II.
If C is any cell of II, and v € C is any vertex of C, then in some of the
II-orderings of V(G), u will be the first vertex of C. In order to focus on
those orderings in which w is first, we split C into two cells, {u} and C — .
Call the resulting partition II,. I' no longer fixes II/,, but the subgroup
'y = {7y € I'| «¥ = v} that fixes u must also fix C — v and all other cells
of IT,,.

3.1 Let I' be a permutation group acting on a set V. The subgroup T’y
consisting of those permutations that fix u is called a stabiliser subgroup.

We now refine I/, to an equitable partition II,. By Lemma 2.2, T, fixes
II,. This process of fixing a vertex u in a partition II and refining II/, to
an equitable partition II,, is called vertez stabilisation. In most graphs it
produces a considerable refinement of II.

3.2 Given a vertex u € C € II, II,, always denotes the equitable partition
obtained by splitting C' and refining the resulting partition.

The number of II,-orderings of V will be much less than the number of
II-orderings. Since some v € C must be first, we do this for each v € C,
and then apply this idea recursively. This gives the following skeleton of a
recursive procedure. The algorithm saves the ordering of V that gives the
smallest adjacency matrix so far. This is called the best ordering.

Stabilise(II: partition) {first version}
{refine II to an equitable partition, with no discrete cells. If it is
not discrete, fix a point from the first cell in all possible ways.}
Begin
Refine(II)
if IT is discrete then begin



This article appeared in Computational and Constructive Design Theory, edited by W.D.
Wallis, Kluwer Academic Publishers, 1996.

146 CHAPTER 6

IT defines an ordering of the vertices
compare it with the best ordering found so far,
replacing the best if necessary
return
end
{otherwise II is not discrete}
C := first cell of II
for each u € C do begin
make a copy II,, of IT in which C is split into
{uv} and C — {u}
Stabilise(IT,,)
Dispose(I1,,)
{since some vertex of C must be first, and we have tested
all vertices of C, at this point we have cert(G)}
end
End {Stabilise}

The calling program begins by setting up a unit partition of V and calling
Stabilise(IT). The recursion defines a search tree. A leaf in a search tree
is a node with no descendants. Each leaf of the search tree corresponds
to a discrete partition of V. Each discrete partition defines an ordering of
V. The certificate of G is now defined as the smallest adjacency matrix
with respect to this restricted set of orderings. Any ordering that gives
the smallest adjacency matrix is called a canonical ordering. The program
maintains a global array B{l..n] of the best ordering of V' found so far. This
is the ordering that gives the smallest adjacency matrix. When the program
terminates B will be a canonical ordering. It also maintains a global array
V[1..n] of the current ordering of the vertices, as constructed by partition
refinement. At this point we need to say a word about the discrete cells
produced by refinement. When Refine(Il) is executed, one or more discrete
cells may be produced. Once a discrete cell has been counted, we remove
it from II, since a discrete cell cannot split any further. We place these
deleted vertices on a third global array F[l..n] of fized points, in the order
in which they are encountered. It may be that 5 or 6 points become fixed
during a refinement. The number of fixed points currently on F is stored
in a variable NFixed. We use the array F to compare with B. We compare
the entries in the upper triangle of A(G) as shown below. Comparing two
orderings is quite time consuming, since it requires a lot of access to the
2-dimensional array A. The function compares F and B between subscripts
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i and j, which willbe i =1 and j =n when orderings arising from discrete
partitions are compared.

Function Compare(i, j: integer): integer
{compare the orderings of A defined by arrays F and B
between entries ¢ and j. Returns —1,0, or 1 according
as F is worse than, equivalent to, or better than B}
begin
ifi =1 theni:=2 {nothing to compare in column 1}
for c:=1i to j do {column c}
for r := 1 to c — 1 do begin {row r}
if A[F[r], Flc]] < A[B]r], Blc]] then return(1)
if A[F[r], F[c]] > A[B]r], B|c]] then return(—1)
end
return(0)
end {Compare}

We now define cert(G) as the smallest adjacency matrix with respect to the
orderings produced by Stabilise(I). For most graphs there will be much
less than n! orderings. In fact, in a probabilistic sense, for “almost all”
graphs, the partition obtained by refining the unit partition will be discrete
[2]. However, most interesting graphs require more work.

Let us consider the complete graph K,,. All the partitions obtained by fixing
a vertex are equitable. Refinement produces no improvement. The depth
of the recursion will be n, corresponding to 0, 1, 2, ..., n — 1 vertices being
fixed. Clearly the search tree contains n! leaf nodes; but they obviously all
give the same certificate, so it is not really necessary to search them all.

(Actually K, can easily be detected since it has (7) edges.)

3.3 If 7 is a permutation of V, A™ denotes the adjacency matrix obtained
from A by permuting the rows and columns by #. Two orderings m; and
mg of V are called equivalent if A™ = A™. Notice that in this case,
A™™2' = A, s0 that mmy ! € Aut(G).

Lemma 3.1 The number of inequivalent orderings of V is nl/|Aut(G)|.
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Proof. Two orderings m; and m are equivalent if and only if Ty le
Aut(G). So each coset of Aut(G) in the symmetric group Sym(V') gives a
set of equivalent orderings.

In particular, K, has only one (inequivalent) ordering of the vertices. If
G has no automorphisms, then there are n! inequivalent orderings of V.
Any two leaf nodes of the search tree are inequivalent. Notice that this
does not mean that the search tree has n! inequivalent leaf nodes. I don’t
think anyone has been able to accurately estimate the number of leaf nodes
of the search tree. Corneil and Goldberg [9] have shown that the number
is sub-factorial, but this is still a weak bound. A proof that there is a
polynomial number would give a polynomial algorithm for graph isomor-
phism. However the behaviour of all current graph isomorphism algorithms
on certain difficult graphs suggests that they are not polynomial in general.
The difficult graphs are invariably those that have very few automorphisms,
but a high degree of “regularity”, by which I mean that they have a large
number of equitable partitions — the cell-adjacencies are very regular in an
equitable partition. In other words, the regularity makes a graph look as
though it were symmetric, when fact it may not be. The search tree will
then contain a very large number of inequivalent leaf nodes.

Permutation Groups

We will need a number of basic properties of permutation groups and sta-
bilisers. They are listed below. They are easy to verify from first principles.
Here I is a permutation group acting on V, 7 is any element of T, u is any
element of V' and v = u™. The order of a group I is denoted |T'|. See the
books by Biggs and White [5] or Wielandt [28] for more information on
permutation groups.

3.4 The coset I'ym consists of all elements of ' that map u to v = u™.

3.5 The orbit of u is the set of all points that I' maps u to, that is,
Orb(u) = u!' = {u7 | v € T}. It follows from 3.4 that [uL].|Ty] = |T).

3.6 The conjugate of a permutation v € I by = is 7 lyx, which is also
denoted by ™. If v maps u to w, then ™ maps «™ to w™.

3.7 The conjugate of the subgroup I'y, is 7~ !I'yw = I'T = T, that is, the
conjugate of the stabiliser of u by = is the stabiliser of v = u™.
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3.8 If [, fixes a partition II, then '] fixes II7.

Lemma 3.2 Suppose that T' < Aut(G) fizes 11, and let II, be obtained by
partition refinement. If m is any element of T', let v = u™. Then II, = II7.

Proof. Let 1= (C1,C2,...,Cp). Then 1" = (CT,CF,...,C). Ifu € Cj,
then u™ € CJ = C;. When 11, is constructed by refinement, a number of
adjacencies in the graph G are counted. Since  is an automorphism of G,
it follows that if a vertex w is adjacent to k vertices of a cell C; of II, that
w™ will also be adjacent to k vertices of C7 = C; in II", and so forth. Thus
at every step of the refinement process, the cells of II,, can be mapped by
n to those of II,. When the process terminates, II] = II,. Notice that I,
fixes II,, and I fixes II7.

In general let ITg, Iy, ..., IIx be the sequence of partitions occurring in a
path to a leaf node in the search tree. Il is the initial equitable partition
obtained by refining the unit partition. A vertex ug in Ilo is fixed, and after
refinement, II; is obtained. Then u; in II; is fixed, and so on, until the
discrete partition ITy is reached. We assume throughout that discrete cells
are deleted as they are encountered, so that Ilg,IIq, ..., IIx_; do not have
any discrete cells. Only IT; has discrete cells. Vertices ug,u1,...,ug—1 have
all been fixed in succession. As outlined above, the program Stabilise(II)
always selects u in the first cell C of II. The reason for this is that the
first cell is very easy to find. The program does not have to do any work
to select it. Other strategies are possible. We could select u in the smallest
cell, or largest cell, or some other specific choice. This would perhaps make
a smaller or larger search tree, but requires more work to select u. So
let C; denote the first cell of II;. Then u; € C;, for = 0,1,...,k — 1.
Let # € Aut(G), and let v; = uf, for ¢ = 0,...,k — 1. Then IIf = Ilo.
Fixing vo instead of ug gives the partition IIT, by Lemma 3.10. Since
u; € C1, we know that vy € CT, the first cell of IIT. Fixing v, in 1T
gives the partition I1F, and so on. Thus, fixing uf,u{,...,uf_, gives a
sequence II§, IIT, ..., IIf of partitions, such that the discrete partition II}
is equivalent to Il.

A sequence wg, uy,...,ur—_3 of points fixed in order to produce a discrete
partition Il is termed a basis for the ordering of V defined by IIx. The
search tree constructed by Stabilise can be defined as the set of all se-
quences (ug, u1,. .., u;) of points fixed in succession by the algorithm, with
adjacencies determined by descent: the sequence (uo, . .., u;, uj41) decends



This article appeared in Computational and Constructive Design Theory, edited by W.D.
Wallis, Kluwer Academic Publishers, 1996.

150 CHAPTER 6
from (uo,...,u;). Each descent corresponds to the vertex fixed, in this
case, u;t1. The tree is rooted at the empty sequence (), corresponding to
no points fixed. Each sequence (uo,...,u;) corresponds to the equitable

partition II;;; constructed by fixing these points in succession. The root
node corresponds to Ilg. Each leaf node corresponds to a discrete partition.
The path from the root to a leaf node defines the basis for that ordering
of V. Fig. 4 shows a graph whose search tree is illustrated in Fig. 7. Each
node of the search tree contains the corresponding partition. In this exam-
ple, the discrete cells of each partition have not been deleted. Each descent
is labelled by the vertex fixed at that point in the algorithm.

The remarks of the preceding paragraph show that if 7 € Aut(G), then =
induces an automorphism of the search tree. We know that Aut(G) fixes
IIp. The algorithm selects ug in ITp and fixes it to get II;. The branch of
the search tree descending from IIp on the edge labelled u¢ will be searched
by Stabilise(Il;). If uf in Ilp is fixed instead, to get IT7, then the branch
descending on the edge labelled u§ will be isomorphic to the branch just
searched, by Lemma 3.10. So having fixed uo, we need fix no other points
uf for any 7 € Aut(G). Write I'o = Aut(G). Let I'; denote the stabiliser
of ug in I'y. Then T'; fixes I1;. In general, let I'; denote the subgroup of
[';_1 obtained by stabilising u;_;. Then T'; fixes II;. The algorithm selects
some u; € C; € II; and fixes it. Let # € T';. The branch of the search
tree descending from II; on the edge labelled u; will be isomorphic to the
branch descending on the edge labelled u7. So having chosen u; € C;, we
need choose no other points u7 for any 7 € I';. That is, we need to fix
ezactly one point from each orbit of I'; on C; in order to find the unique
minimum adjacency matrix of G.

4
Figure 4 The graph of the octahedron

Initially the algorithm does not know Aut(G) or any of the stabiliser sub-
groups I';, However as the program executes it will occasionally find a leaf
node whose ordering of V' is equivalent to the best ordering. By Lemma
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3.4 this means that an automorphism of G has been discovered. The pro-
gram maintains a data structure representing [, 'y, ['g,.... Each time an
automorphism 7 is discovered, the data structure is updated. This enables
the program to avoid searching most equivalent branches of the tree. In the
next section we describe the data structures used to represent the stabiliser

subgroups.

4 THE SCHREIER-SIMS ALGORITHM

Given a set of permutations of a set V', we can make a permutation diagram
for them. It is a directed graph in which the vertices are the elements of
V. The edges are labelled by the permutations. If 7 is a permutation that
maps v to v = u™, then there is an edge from u to v labelled 7. Fig. 5
shows a permutation diagram for = = (1,6, 5,2, 4, 3) and

7= (1,4,3)(2,5)(6). These diagrams are the basis of many algorithms for
groups.

V ={1,2,3,4,5,6}
7= (1,6,24,5,3)
7= (1)(2,5)(3,6)(4)

_____

Figure 5 A permutation diagram

Let I" denote the group generated by = and 7. Suppose that we are given =
and 7 and want to find I and a sequence of stabiliser subgroups. I' consists
of all products that can be formed from w, 7 and their inverses. It is very
easy to construct the permutation diagram for = and 7. Notice that each
connected component of the permutation diagram represents an orbit of
I. In the example above there is only one orbit. Suppose that we start at
vertex 1 in the graph of Fig. 5 and follow the edges labelled 7nrmrnr 1. We
come to vertices 1,6,2,5,3,6,1, in that order. We conclude that the product
mrTnrn ! maps 1 to 1, that is, it is an element of the stabiliser of 1 in I'.
Thus we have the following important observation.
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4.1 Every walk in the permutation diagram corresponds to a product of
the generators and/or their inverses. Given any starting point u € V, every
product of the generators and/or their inverses corresponds to a walk in
the permutation diagram starting at «. If the walk ends at point v € V,
then u is mapped to v by this product.

Thus the stabiliser I',, of a point u corresponds to all walks that start and
end at u. The walks that start at « and end at v correspond to all elements
of I' mapping u to v, that is, a right coset of I',, (see 3.5). Let us choose a
spanning tree T of the graph, and pick any point v as the root node of T.
Fig. 5 shows a spanning tree 7' in grey rooted at point 5. Now T contains a
unique path from  to every point in V. These paths define a representative
element of I' mapping u to v, for every v. This gives a second important
observation.

4.2 Every spanning tree T of a connected component X of the permuta-
tion diagram defines a decomposition of I into right cosets of I',, where u
is any point in X.

The spanning tree in Fig. 5 is rooted at point 5. The cosets of ['s, the
stabiliser of point 5, are then I'sw, Tsn2, Tsn3, Tsz~!, and sr—2, as
determined by T'. If we could construct generators for T',, then together
with the coset representatives, this would completely determine T

Let X denote a connected component of the permutation diagram with
spanning tree T rooted at u. For every vertex v in X let T, denote the
word in the generators corresponding to the path in T from v to v. If vw
is any edge not in T', then T + vw contains a unique cycle, the fundamental
cycle Cyy of vw with respect to T. Suppose that vw corresponds to a
generator m. Then T,nT,! is a walk in X that starts at v, travels to v,
follows the edge vw to w, then travels along T;! back to u. That is, it is a
walk that starts at u, travels along a path in T to the fundamental cycle of
vw, follows the cycle around, and then returns to u. See Fig. 6. In Fig. 5,
for example, if the edge (6,3) corresponding to the generator = is used,
the fundamental cycle is (3,1,6) and the walk Tg7Ty5 1 gives the sequence
(5,3,1,6,3,5) of vertices, which corresponds to the product mrrxra—! of
the generators. Any edge vw not in T is called a chord of T.

It is a theorem of graph theory that every closed walk in a graph can be
decomposed into fundamental cycles. See Bollobas [6] for a proof. We
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Figure 6 A fundamental cycle Cyy,

sketch an outline of the proof here. Every cycle C in X must contain at
least one edge not in T'. Suppose that it contains edges viwi, vaws, ..., vpwi
not in 7. If k = 1 then C is the fundamental cycle Cy,w,. To,v1w1T," is a
walk that starts at u, travels to C, travels around C and then returns to u.
If £ > 1 we prove by induction that Tululwngll . TvkvkwkT;kl is a. closed
walk that starts at u, travels to C, travels around C and returns to u. To
complete the proof it is only necessary to show that every closed walk can
be decomposed into cycles.

Since a walk that starts and ends at u is an element of the stabiliser T,
we have another important observation. This result is of fundamental im-
portance to many algorithms for groups.

4.3 Let T be a spanning tree of the permutation diagram, with root node
u. Then Ty is generated by the products of the generators given by the
walks TyowT, !, where vw is any chord of 7.

A consequence of 4.3 is that we now have a method of constructing a

representation of any permutation group I' for which generators are given.
It is called the Schreier-Sims algorithm [7,8].

We store a permutation of V as an array of integers. The number of points
in V' will only be known when the program executes. Therefore we store
pointers to permutations and allocate the arrays dynamically with the ap-
propriate length. When storing a group, we need an array of coset represen-
tatives, that is, an array of permutations. Since we don’t know the length
of the array at compile-time, we store a pointer to an array of pointers.
.The generators of a group are stored as a linked list of permutations.
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PermPtr = "Perm

Perm = array[l..n] of integer

CosetPtr = "CosetReps

CosetReps = array[l..n] of PermPtr

GenPtr = “Gen

Gen = record
GenPerm: PermPtr
NextGen: GenPtr

end

The data structure used to represent a permutation group I' contains a
linked list of generators, an orbit Orb(u), for some point « € V, and a
representative for each coset of I'y,. It is also convenient to store the inverses
of some of the coset representatives. The orbit is stored on an array, which
is allocated dynamically as a PermPtr. The number of points in the orbit
is stored as NPts. The data structure also contains the stabiliser I',,. Since
I'y is also a group, we have a recursive data structure.

GroupPtr = *Group
Group = record
Generators: GenPtr { linked list of generators }
u: integer
Orbit: PermPtr { the orbit of u }
NPts: integer { number of points in Orb(u) }
Cosets: CosetPtr { coset reps of T, }
Inverses: CosetPtr
Fu: GroupPtr { stabiliser of u }
end

Orbit"[k] is the k** point in the orbit of u, for k = 1,2,..., NPts. The
first point in the orbit is Orbit*[1] = u. The coset representative for
v =Orbit"[k] is Cosets™[v]. If v is a point not in the orbit of u, then
Cosets™[v] = nil. Given this representation of a group I' acting on V =
{1,2,...,n}, and any permutation v on V we can easily determine whether
v € I, as follows.

GroupElt(y: PermPtr; I': GroupPtr): Boolean
{returns true if y € I'}
var 7: PermPtr

Begin
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for k := 1 to n do if v [k] # k then goto 1
return(true) {y € I since v is the identity}
1: with T do
begin
v:=7"[u]
if Cosets”[v] =nil then return(false) {v & Orb(u)}
r := MultiplyPerm(~, Inverses”"[v])
{m maps u to u}
return(GroupElt(T'y, 7))
end
End {GroupElt}

The program first checks whether v is the identity. We assume that the
number of points, n, is a global variable. If v is not the identity, v = u”
is found, and the program checks whether v €Orb(u). If not, then v ¢ I.
Otherwise let v, denote the coset representatlve stored for the point v (v, =
Cosets” [v]). The product = = ;! is computed. Clearly  fixes u, so that
~ €T if and only if = € T'. Therefore the program makes a recursive call
A function MultiplyPerm is needed in order to compute the product vyt
This assumes that the inverses of all coset representatives have been stored.
If this is not the case, an additional statement is needed:

if Inverses”[v] = nil then Inverses"[v] := InversePerm(Cosets” [v])

where InversePerm is the following function.

InversePerm(y: PermPtr): PermPtr

var 7: PermPtr

begin
7 := NewPerm(n) {allocate a new perm on n points}
for k :== 1 to n do 7"y [k]] := &k
return(r)

end {InversePerm}

We are now in a position to give the code for the Schreier-Sims algorithm for
constructing a representation of a permutation group I' from its generators.
The algorithm is based on a breadth first search to construct the permu-
tation diagram for the generators of I'. It builds a breadth-first spanning
tree T which is used to define a set of coset representatives for the stabiliser
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subgroup I',,. The chords of the spanning tree are used to construct gener-
ators for I'y,. The main procedure AddGen takes an existing group I"' which
is already stored. The first time it is called, I" will have been intiallized to
the identity group on n points. This is a Group record whose arrays have
been allocated to have length n, but with no generators, and no point
selected. In an identity group the arrays Cosets and Inverses are allocated
and every entry is intiallized to nil, and the stabiliser subgroup I', is set
to nil. The program takes a permutation v which is a generator of I', but
not yet represented in the data structure. Thus, y € I when the procedure
is called. It updates the data structure so that upon completion v is now
recognized as a generator of I'.

AddGen(y: PermPtr; I': GroupPtr)
{add v to the data structure representing r}
var 7: PermPtr
Begin with I'* do begin
if I'y, = nil then begin
{initialize I, to the identity group on n points}
Ty := IdentityGroup(n)
{find a point » moved by ~}
ui=1
while Y u] =u do u:=u +1
end
add v to the linked list Generators
M := NPts {current number of points in Orb(u)}
k=1
while & < M do begin
v := Orbit"[k] {k*® point in the orbit}
w = 5" [v]
if Cosets” [w] = nil then begin {w ¢ Orb(u)}
NPts := NPts + 1
Orbit"[NPts] := w {add w to Orb(u)}
Cosets” [w] := MultiplyPerm(Cosets”[v], 7)
end
else begin  {w € Orb(u)}
if Inverses” [w] = nil then
Inverses” [w] := InversePerm(Cosets”[w])
7 := GenMultiply(Cosets” [v], v, Inverses”[w])
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if not GroupElt(w, T',,) then AddGen(m, I'y)
else Dispose(n) {= is not needed}
end
k:=k+1
end
{if v has extended Orb(u), apply all generators to all new points}
while & < NPts do begin
v := Orbit"[k] {k*" point in the orbit}
for each generator 7 € Generators do begin
w = 7]
if Cosets”[w] = nil then begin {w ¢ Orb(u)}
NPts := NPts + 1
Orbit*[NPts] := w {add w to Orb(u)}
Cosets [w] := MultiplyPerm(Cosets"[v], )
end
else begin {w € Orb(u)}
if Inverses” [w] = nil then
Inverses [w] := InversePerm(Cosets”" [w])
7 := GenMultiply(Cosets”[v], 7, Inverses” [w])
if not GroupElt(r, ) then AddGen(r, I'y)
else Dispose(r) {r is not needed}
end
ki=k+1
end
end
end end {AddGen}

The procedure first computes w = v»7 for all v € Orb(u). Let v, =
Cosets"[v] be the coset representative for v. If w ¢ Orb(u), then w is
added to the orbit. 7,7y maps u to w, so it becomes ., the coset repre-
sentative for w. It is computed by MultiplyPerm. If w € Orb(u), then
T = 'yu'y'y;l maps u to u. Therefore it is a generator for the stabiliser I',.
GenMultiply is a procedure that performs this multiplication. This is more
efficient than calling MultiplyPerm twice.

GenMultiply(e, 8,v: PermPtr): PermPtr
{compute a8}
var 7: PermPtr
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begin
7 := NewPerm(n) {allocate a new perm on n points}
for k := 1 to n do 7"[k] := ¥[8 o [¥]]]
return(r)

end {GenMultiply}

The program calls GroupElt to check if = is known to be in ['. If so i
is discarded. The storage used by it is reclaimed by Dispose, an operating
system call. If » is not currently known to be in I, then AddGen is
called recursively. When it returns, the data structure representing I, will
have been modified to account for 7. Once v has been applied to all v €
Orb(u), the program applies all generators of I to all new points in the
orbit. This builds the permutation diagram for the orbit containing wu.
When the program terminates, a coset representative has been stored for
each v € Orb(u), and the stabiliser T',, is up to date. Therefore the data
structure for I' is also up to date.

The sequence of points fixed in order to construct the tower of stabilisers
is called the basis of the group. See Butler and Cannon [7] and Butler
and Lam (8] for further information. The program AddGen constructs the
permutation diagram using a breadth-first search. A number of variations
on this algorithm are possible. See Kirk [17], Butler and Cannon [7] and
Butler and Lam [8]. If there are k generators and n points in the orbit
of u, the number of coset representatives stored will be n. The number of
steps required to multiply two permutations of degree n is n. Therefore the
number of steps required to build the diagram is proportional to kn2, for
one level in the recursion. The depth of the recursion will depend on the
group I The symmetric group requires depth n. The alternating group
requires depth n — 1. All other groups require much less, since any group
which is 6-transitive or more must be either an alternating or symmetric
group. The number of generators can always be taken to be at most logs |I,
since each new generator must expand the tower by at least doubling the
size of at least one group. Since |I'| < n!, we can use Stirling’s formula
n! x n"e”"v27n to get a polynomial bound on the complexity of AddGen.
However the only groups that reach the bound are the alternating and
symmetric groups. These can often be detected and handled as special cases
to give a much better complexity. A number of variants are also possible for
the AddGen procedure such as randomized methods for building the group,
or storing the coset representatives as words in the generators, rather than
permutations.
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5 GRAPH ISOMORPHISM

The procedure AddGen is called each time an automorphism is discovered
in the search tree created by Stabilise. Notice that the automorphism
group T is stored as a set of coset representatives plus a stabiliser subgroup.
Together these create a tower of stabilisers. Each time an automorphism
is discovered the effect is to expand the entire tower. Therefore the orbits

will be updated for each group in the tower.

In section 3 we had a sequence of partitions Ilp, Iy, . . ., I1; and a sequence of
vertices ug, U1, - - - , uk—1 such that u; in II; was stabilised in order to obtain
II;+1. A sequence of groups I'g, 'y, ..., Tk is associated with the partitions.
To = Aut(G). Tiyq is the stabiliser of u; in I, where 1 = 0,1,...,k — 1.
I; fixes II;. T is the identity group. So the basis ug,u1,...,uk-1 of the
discrete partition I is also a basis for the group I'p. Associated with each
node of the search tree is a partition II; and a group I';. Associated with
each descent from II; to II;; is the vertex u;. u; is contained in the first
cell C; of I1;. In order to select a vertex from each orbit of I'; acting on C;
we must store the orbits of I'; on C;. They are stored in an array referenced
by the pointer CellOrbits. We collect together in one data structure the
various objects associated with a partition.

SearchNodePtr = "SearchNode
SearchNode = record
Partition: CellPtr {a partition II;}
FixedPt: Integer {the point u; fixed to get IT; 1}
ItsGroup: GroupPtr {the group T';}
CellOrbits: PermPtr {the orbits of I'; on C;}
Depth: Integer {current depth of the search tree}
NFixed: Integer {the number of fixed points on the array F'}
OnBestPath: Boolean {whether the node is on the best path}

NextSearchNode: SearchNodePtr {the next search node, descending}
end

The Cell Orbits.

The orbits of I'; on C;, the first cell of II;, are stored using the union-find
data structure (see Aho, Hopcroft and Ullmann [1}, Weiss [27]). CellOrbits
points to an integer array of length n = |V|. Each orbit has a representative
vertex. Two vertices are in the same orbit if and only if they have the
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same representative. The value of CellOrbits*[v] is a pointer toward the
representative, which in turn is marked by a negative value. We initiallize
CellOrbits"[v] = —1, for all v € C;. The entries for v ¢ C; are not used.
The value of —1 indicates that each v is an orbit representative, and thus
forms an orbit by itself. This is the situation initially when T'; is the identity
group. When a generator v of T'; is found, there will be a call to AddGen(y,
I';). AddGen must update the known orbits of I'; on C;. Thus it will contain
a call to the following procedure, which can be placed immediately after
the statement adding v to the list of generators.

UpdateOrbits(y: PermPtr, C: CellPtr)
{update the orbits of the stabiliser on cell C'}
Begin with C” do begin
for k := FirstPt to LastPt do begin
u:=V[k] {k* vertex of the graph}
v = 7" u]
uRep := OrbitRep(u) {orbit representative for u}
vRep := OrbitRep(v) {orbit representative for v}
if uRep # vRep then Merge(uRep, vRep)
end
end End {UpdateOrbits}

In order to have access to the partition we must change the calling param-
eters of AddGen to include the current searchnode, which in turn contains
the group.

AddGen(y: PermPtr; S: SearchNodePtr)

The procedure UpdateOrbits computes v = «” for all w € C and merges the
orbits of u and v if they are different. Orbits are merged by reassigning the
CellOrbits pointer for one of v and v. For efficiency, we merge the smaller
orbit onto the larger (see [1]). The size of an orbit is given by the negative
value stored in CellOrbits for the orbit representatives.

Merge(uRep, vRep: Integer)
{merge the orbits of uRep and vRep, which are orbit representatives}
Begin

uSize := —CellOrbits” [uRep]

vSize := —CellOrbits” [vRep]

if uSize < vSize then begin
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CellOrbits” [uRep] := vRep
w := vRep {the new orbit representative}
end
else begin
CellOrbits” [vRep] := uRep
w := uRep {the new orbit representative}
end
CellOrbits [w] := —(uSize + vSize)
End {Merge}

The function OrbitRep follows the pointers CellOrbits[v] to the orbit rep-
resentative.

OrbitRep(v: Integer): Integer
{follow the pointers to the orbit representative}
var w: Integer
Begin
if CellOrbits”[v] < 0 then return(v)
w := OrbitRep(CellOrbits” [v])
CellOrbits [v] := w {path compression}
return(w)
End {OrbitRep}

These procedures require access to the CellOrbits array. It can either be
passed as a parameter, or else a global variable can be used to store a
pointer to the current CellOrbits array.

Comparing Orderings.

As presented in section 3, the procedure Stabilise first refines II, then selects
in turn each u € C € II, creates a partition II, in which u is fixed, and calls
itself recursively. During the refinement of II,,, any discrete cells are deleted.
The vertices in discrete cells are placed on an array F of fixed points. At
least one vertex, u, is moved to the array F during each refinement. The
Refine procedure will also set the variable NFixed, the number of points
currently on the array F. In order to have access to this variable, we must

altt.ar the calling parameters for Refine to include the current searchnode,
which contains the partition to be refined.

Refine(S: SearchNodePtr)
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The first time a discrete partition is obtained, the ordering of F is saved
to an array B, the best ordering so far. B is a candidate for the canonical
ordering of V. The program needs to know whether the ordering B has
been intiallized yet. We use a global boolean variable B_exists to indicate
this condition. It is initially set to false. In order to detect whether a refined
partition is discrete, the Refine procedure can set a global boolean variable
isDiscrete. The initial search node created containing the unit partition
(before refinement) is saved as a global variable, called TopSearchNode.
The GroupPtr that it contains points to Aut(G). When an automorphism
is discovered by the program, it is added to the TopSearchNode. A refined
version of the procedure Stabilise is now presented.

Stabilise(S: SearchNodePtr) {refined version}
{S is the current search node, containing a partition II. Refine II,
then select u in the first cell of II in all inequivalent ways}
Begin
m := §".NFixed {save the number of points currently fixed}
S”.0OnBestPath := false
Refine(S) {refine the partition in this search node}
Result := CompareOrders(m + 1, $”.NFixed)
if isDiscrete then begin
if B_exists then begin
case Result of
equal: begin {an automorphism has been found}
v := NewPerm(n) {allocate a new PermPtr}
for k := 1 to n do ¥y [F[k]] := B[¥]
AddGen(y, TopSearchNode)
AutoFound := true
end
better: begin
copy F[l..n] to B[l..n]
set all OnBestPath values to true
end
worse: {ignore}
end {case}
end
else begin
copy F[l..n] to B[l..n]
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B_exists := true
set all OnBestPath values to true
end
goto 1
end {if isDiscrete}
{otherwise the partition is not discrete}
case Result of
equal: {ignore}
better: B_exists := false
worse: goto 1
end {case}
with §” do begin
IT := Partition
if NextSearchNode=nil then create and initiallize
NextSearchNode
S := NextSearchNode
end
C := first cell of IT
u := C\.FirstPt
repeat {until all inequivalent choices © have been made}
S/ FixedPt := u
make a copy II, of II in which C is split into {«} and

C — {u}
S/ Partition := II,,
Stabilise(S,,)
if AutoFound then ...
dispose(Il,,)

mark CellOrbits” [u] to indicate that v has been fixed
change the base of Aut(G) if necessary
select next inequivalent u € C to stabilise
until no » was found
1: {reset degrees to 0 before returning}
for k ;== m 4 1 to S".NFixed do Degree[F[k]] := 0

S".FixedPt := 0 {mark this search node inactive}
End {Stabilise}
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The Global Variables.

We collect together here a brief summary of the global variables used by
the program, and their purpose.

: array, the adjacency matrix

: array, the current ordering of the vertices

: array, the best ordering of the vertices found so far

: array, the array of points fixed by refinement

Graphlu]: linked list, the vertices adjacent to u

isDiscrete: Boolean, whether refinement produced a discrete partition
B_exists: Boolean, whether the array B has a value
AutoFound: Boolean, whether an automorphism was found
TopSearchNode: SearchNodePtr, the initial search node
LastBaseChange: SearchNodePtr, see below

BasisOK: Integer, the depth to which the bases agree

R B

When an Automorphism is Discovered.

There are several subtle aspects of the algorithm which are best illustrated
by an example. Let G be the graph of Fig. 4. See also the search tree of
Fig. 7. The initial unit partition is

o = {1,2,3,4,5,6}

The program will move the points of discrete cells to the array F. However
we show the discrete cells included with each partition in this example. The
cells of an ordered partition are shown separated by vertical bars.

Stabilise(Ilp) is called, Iy is refined
Iy = {1,2,3,4,5,6} is equitable
fix1:= I ={1]2,3,4,5,6}
Stabilise(I1;) is called, II; is refined
Iy ={1]6]2,3,4,5} is equitable, F=(1,6)
fix2:=> Iy={1]6]2]3,45}
Stabilise(Ils) is called, Il is refined
Mo ={1]6]2]4]|3,5}is equitable,  F = (1,6,2,4)
fix3:=> I3={1]6(2]4|3]5}
Stabilise(Il3) is called, I3 is refined
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I15 is discrete, B =(1,6,2,4,3,5) is assigned
Backtrack to Il
fix 5 := M3={1]6[2|4]5]3}
Stabilise(Il3) is called, II3 is refined
I1; is discrete, F =(1,6,2,4,5,3)
An automorphism v = (3,5) is discovered.
AddGen is called.
The orbits of each I'; on the first cell of II; are updated.
The orbits are indicated as follows.
o = {(1),(2),(3,5), (4), (6)}
m = {116 (2), (3,5), (4)}
M ={1]6]2]4](3,5)}
Backtrack to Il
In IIs both 3 and 5 have already been fixed
= backtrack to I,
In I1;, only 2 has been fixed so far
fix 3 := Mo={1]6]3]|2,4,5}
Stabilise(Ilz) is called, II5 is refined
O, ={1|6]3]|5]2,4} is equitable,  F = (1,6,3,5)
fix 2 := Mz3={1]6|315|2]4}
Stabilise(Il3) is called, II3 is refined
IT3 is discrete, F =(1,6,3,5,2,4)
An automorphism v = (2,3)(4, 5) is discovered.
AddGen is called.
The generators of Aut(G) are now (3,5) and (2, 3)(4, 5)
The orbits of each I'; on the first cell of II; are updated.
o = {(1), (2,3,4,5), (6)}
I ={116](2,3,4,5)}
I ={116]3]5](2,4)}
Backtrack to Il
In II; points 2 and 4 are in the same orbit
= backtrack to II;
In II; points 2,3,4,5 are in the same orbit = backtrack to ITg
fix2:= I ={2]1,3,4,5,6}
Stabilise(I1;) is called, II; is refined
II; = {2]4]1,3,5,6} is equitable, F=(2,4)
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fix 1:= I={2]4]1]3,5,6}

Stabilise(Ily) is called, Iy is refined

My={2}14{1]|613,5} is equitable, F=(2,416)

fix 3 := Mz3={2{4|1]6]3]|5}
Stabilise(Il3) is called, I3 is refined
I15 is discrete, F=(2,4,1,6,3,5)
An automorphism v = (1, 2)(4, 6) is discovered.

AddGen is called.
The generators of Aut(G) are now
(3,5),(2,3)(4,5), and (1,2)(4,6)

The orbits of each T'; on the first cell of II; are updated.
IIo = {(1,2,3,4,5,6)}
I ={2(4](1,3,5,6)}
My={2]4]1]6](3,5)}
Backtrack to I1g

In IT7 points 3 and 5 are in the same orbit
= backtrack to II;

In I1; points 1,3,5, 6 are in the same orbit = backtrack to
IIg
In IIp points 1,2,3,4,5,6 are in the same orbit = done.

The program visited 4 leaf nodes in the search tree, as shown in Fig. 7.
Three generators for Aut(G) were found. It is easy to see that these gen-
erators give all of Aut(G), for the following reason. If the orbits of I'; on
C; were not stored, the search algorithm would visit every leaf node of the
search tree. Consider the first time an ordering B giving the minimum
adjacency matrix was found. The number of leaf nodes with an equiva-
lent ordering is [Aut(G)|. Since every one of these would be visited by
the search, every automorphism would be found. By computing the orbits
of I'; on C;, the program avoids visiting leaf nodes which it knows to be
equivalent to a node already visited. Therefore it will find a representative
of every coset of I'; in I';_;. Consequently the generators found generate
all of Aut(G). The group I'g is initially the identity group, and grows un-
til it equals Aut(G). T'g is always a subgroup of Aut(G). So each time a
new generator is discovered, I'g must at least double in size. Therefore the
number of generators found is at most loga]Aut(G)|.

In the example above, all leaf nodes of the search tree are equivalent to
each other. Each one gives an automorphism of G. For larger graphs, the
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{1,2,3,4,5,6}

{1/61214/3/5}  {1[6]2[4/53} {1l6[3[5[2]4}  {2/4]1]6]3[5}
B=(16,2,435) 7=(3,5) 7=(2,3)(45)  1=(1,2)(46)

Figure 7 The search tree for the graph of Fig. 6

search tree does not have such a simple structure, even when G is highly
symmetric. The ordering B can be set and reset many times. Consider the
portion of a search tree shown in Fig. 8. The tree is drawn so that the leaf
nodes are visited from left to right.

t(°

Figure 8 A portion of a search tree
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The first discrete partition occurs at the node labelled B;. The ordering B
is assigned at this point. The next discrete partition gives an equivalent or-
dering, indicated by =B; in the diagram. At each level in the recursion the
program compares the orderings B and F for the new points fixed at that
level. This occurs in the statement “CompareOrders(m + 1, S".NFixed)”.
It can occur that the new ordering F is already discovered to be better
than the previous best ordering B. This is the situation at node X in the
diagram. At this point the program sets the flag B_exists to false. When
the next leaf node is reached, the array B is assigned, as if for the first time.
This is at node By in the diagram. Notice that the depth of the recursion
when a leaf node is discovered can vary. The program then visits the two
leaf nodes marked W and finds that the orderings there are worse than the
current ordering By.

Notice that an automorphism can be missed! These orderings marked W
could be equivalent to Bj, but the program does not notice it. In order
to avoid this situation, we could store the best two orderings, or the best
three, etc. However the more orderings we store, the longer it takes to do
a comparison. So far as I know, Nauty stores two orderings, the first one
found, and the best so far. The current version of Groups & Graphs stores
only one best ordering.

We make another observation at this point. We have defined a canonical
ordering as one which gives a minimum adjacency matrix over all leaf nodes
of the search tree constructed by Stabilise. It is possible to use the shape
of the search tree to further restrict the orderings considered as candidates
for the canonical ordering. We could require that only leaf nodes at the
minimum possible depth in the recursion are valid candidates. This would
exclude the node B39 in Fig. 8.

The program then proceeds to the node marked =By where an ordering
equivalent to By is reached. An automorphism is discovered. This means
that the current branch of the search tree being searched is equivalent to a
branch previously searched. There is no need to continue searching the cur-
rent branch. How is this detected by the program? The discrete partition
at By was obtained by fixing a sequence of vertices ug, w1, ug,u3,.... The
partition at =B, was obtained by fixing another sequence vg, vy, va, vs, . . ..
These two sequences will usually have some initial vertices in common, in
this example, uo = vg but u; # vy. At node Z, u; was first fixed and the
branch of the search tree containing B; and =B; were searched. Then v;
was fixed and the search descended to the branch containing node = Bj.
The automorphism ~ that was discovered maps each u; to v;. Therefore
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once v has been added to Aut(G), the program can ascend up the search
tree to node Z, without searching any remaining portion of the current
branch. There are several ways to find the node Z. The method used by
Groups & Graphs works as follows. The path in the search tree from the
top to the leaf node containing B is called the best path. The search node
data structure contains a boolean value OnBestPath. This is initiallized
to false each time Stabilise is entered. Whenever B is assigned, the pro-
gram executes a loop which starts at TopSearchNode and sets the value of
OnBestPath to true for every search node. When the algorithm later de-
scends into other branches of the search tree, some of these will be changed
to false. This is indicated in Fig. 8 by the letters t and f beside the nodes.
The t’s were assigned when node B; was visited. When an automorphism
is discovered, a global flag AutoFound is set to true. So long as AutoFound
remains true and OnBestPath is false, the program ascends the search tree.
In the example, it will ascend to node Z before another branch is entered.
The statement in the program that does this needs to be inserted after the
recursive call to Stabilise.

if AutoFound then begin
if not $”.OnBestPath then goto 1
AutoFound := false

end

When Stabilise is descending the search tree the values Degree[v] are not
re-initiallized after each refinement. This is because the degree is a cell-
invariant of the partition. Before returning to the point where Stabilise
was called from, it must re-initiallize the degrees, only for the vertices
which were fixed by the refinement at that level. The reason for this is
as follows. At a leaf node, every vertex currently in the partition became
fixed. Before returning, the degrees of the vertices just fixed will all be reset
to zero. When the calling program in turn is ready to return, it will reset
to zero the degrees of the vertices which were fixed at that level, and so on
up the tree. This selective re-initiallization saves an enormous amount of
execution time.

It is also possible to input to the program known automorphisms of the
graph before beginning the search. The group generated by the known
automorphisms can prune the search tree significantly. Butler and Lam (8]
have developed a very general algorithm that restricts the search to those

Portions of the search tree known to be equivalent under the action of a
Specified group.
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Change of Basis.

There is a correspondence between the basis of the automorphism group,
and the basis of the partitions created by refinement. Suppose that ug, uq,
...,uj_1 have been fixed to create a partition II;. A vertex u; € C; is to be
selected for stabilisation. We need to know the orbits of I'; on C;. Whenever
a vertez u is to be selected for stabilisation, the basis of the automorphism
group and the basis of the partition must be the same. Consider again the
search tree of Fig. 8. When the automorphism discovered at the node =B,
is added to the group, the basis used for the group will be the current basis
of the partition, corresponding to the leftmost path through the search tree.
Later, when at node Y vertices are selected for stabilisation, the basis will
have changed. This must be reflected in the data structure storing Aut(G).
The basis of the group is constantly changing.

As presented in section 4, AddGen selects the point v to fix as any point
moved by . This must be changed so that the basis of the group always
agrees with that of the partition.

if SN FixedPt # 0 then ItsGroup”.u := S*.FixedPt else select ItsGroup”.u
as any point moved by v

Sometimes the basis of the group will be longer than the basis of the par-
tition. In order to accomodate this possibility, the FixedPt of the search
node will be set to zero to indicate an inactive search node. This occurs at
the end of Stabilise.

Before selecting u for stabilisation, the program must check whether the ba-
sis of Aut(G) equals the current sequence of fixed points. The program exe-
cutes very many base changes. In order to avoid comparing the sequences of
stabilised points, we store some additional information. Let U = ug, u1,...
denote the basis of Aut(G), and let U’ = ug, ul, ... denote the basis of the
partition. The first time an automorphism is discovered, AddGen will con-
struct Tg, 'y, ... with the current basis U’, so that the bases agree. When
the program acsends the search tree up to a partition II;, the bases will still
agree up to depth . If the program now selects a new u; to stabilise and
descends to II;y; the bases will disagree at this point. The program will
continue to descend the tree until a discrete partition is reached. When it
then selects another point to stabilise, the bases will still be in agreement
up to depth ¢ — 1. Thus we store a global variable BasisOK which contains
the depth up to which the bases are in agreement, and a global variable
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LastBaseChange which points to the searchnode whose depth equals Ba-
sisOK. So when the program is descending the search tree, the value of
BasisOK doesn’t change. When the program is ascending, its value can
decrease. We add the following statements right after “if AutoFound then

»”

if $~.Depth > BasisOK then ChangeBase(S”.Depth)
BasisOK := S”.Depth
LastBaseChange := S

The base change algorithm used by Groups & Graphs is very straightfor-
ward. It simply deletes the generators and coset representatives from the
groups at depth greater than BasisOK and rebuilds the tower of stabiliser
subgroups from this depth. It also re-initiallizes the CellOrbits. An alter-
native way of changing the basis without deleting the existing information
is to use the Butler-Sims base change algorithm [8]. It works by converting
one basis into another through a sequence of transpositions of consecutive
fixed points. My experience with graph isomorphism suggests that it is
faster to simply delete the existing data structures and rebuild them. This
may not be true for all implementations of the Butler-Sims algorithm.

ChangeBase(d: Integer)
{change the basis of the automorphism group, called from depth d}
var I': GroupPtr
S: SearchNodePtr
Begin
§ := LastBaseChange
I' ;== SA.ItsGroup
if I' = nil then return {no group at this depth of recursion}
if I'*.T'y, = nil then return {I' = identity group}
{first reset the cell orbits from depth BasisOK}
S := §" . NextSearchNode
while $ # nil do begin
{search nodes below depth d do not correspond to partitions/}
if S*.Depth < d then begin
C := first cell of S”.Partition
for i := C”.FirstPt to C”.LastPt do
S™.CellOrbits™ [V [3]] := —~1
end
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S := S§”.NextSearchNode

end

save the generators from I’

delete coset representatives from T’

delete generators and coset representatives for all groups
in I';, tower

for each generator v of I' do AddGen(y, LastBaseChange)

End {ChangeBase}

Marking the Cell Orbits.

When a point u; € C; has been stabilised in the search node containing
II;, the orbit of I'; containing u; must be marked to indicate that it is not
necessary to stabilise any more points from that orbit. If this orbit later
merges with other orbits when an automorphism is discovered, the resulting
orbit must also be marked to indicate that a point from it has already been
fixed. One way to do this is to utilise the CellOrbits array. Currently the
value stored in CellOrbits[v] has the following property.

CellOrbits[v] > 0, if v is not the representative of Orb(v)
CellOrbits[v) = —|Orb(v)|, if v is the representative of Orb(v)

If v is an orbit representative, we can use the value stored in CellOrbits[v]
to mark an orbit. If n is the (global) number of points in the graph G, we
can set

CellOrbits[v] = —|Orb(v)|, if no point from Orb(v) has been fixed
CellOrbits[v] = —|Orb(v)| — n, if a point from Orb(v) has been fixed

The only effect this has is to require a slight modification to the procedure
which merges orbits when an automorphism is added to the group. It
also has the advantage of not requiring another array to mark the orbits,
since another array would have to be re-initiallized every time the basis is
changed.
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6 AFTERWORD

Many modifications to these ideas and methods are possible. It is my ex-
perience that there are many people who are interested in writing isomor-
phism programs, but who are somewhat daunted by the difficulty and the
lack of information on specific programming techniques. I have endeavored
to provide the results of my experience programming graph isomorphism,
in order to highlight the main ideas involved and to point out some of the
difficulties, subtleties, and unexplored possibilities.
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