
November, 1993

This paper appeared in Utilitas Mathematica 45 (1994), 169-185.

An Algorithm for Finding a Long Path in a Graph

William Kocay* and Pak-Ching Li
Computer Science Department

University of Manitoba
Winnipeg, Manitoba, CANADA, R3T 2N2

e-mail: bkocay@cs.umanitoba.ca

Abstract
An algorithm is described which constructs a long path containing

a selected vertex x in a graph G. In hamiltonian graphs, it often finds
a hamilton cycle or path. The algorithm uses crossovers of order k ≤ M ,
where M is a fixed constant, to build a longer and longer path. The method
is based on theoretical methods often used to prove graphs hamiltonian.

1. Crossovers

Let G be a 2-connected undirected simple graph on n vertices. If u, v ∈
V (G), then u → v means that u is adjacent to v (and so also v → u). The
reader is referred to [4] for other graph-theoretic terminology. In particular,
a trail in G is a walk in which vertices may be repeated, but not edges. Since
G is simple, paths and trails may be represented as sequences of vertices.
This uniquely defines their edge-sets. If (w0, w1, . . . , wm) represents a trail
Q, we use Q to denote both the trail itself (ie, a subgraph of G), its sequence
of vertices, as well as its set of edges. The usage should always be clear
from the context. Let x be a vertex of G. We want to find a long path P
in G containing x. Initially, P = (x), a path of length 0. We then extend
the path P as follows.

u := x; v := x
while ∃w → u such that w 6∈ P do P := P + uw; u := w; end
while ∃w → v such that w 6∈ P do P := P + vw; v := w; end

At this point we have a uv-path P = (u, . . . , x, . . . , v) such that the end-
points u and v are adjacent only to vertices of P . The length of P is `(P),
the number of edges in P . The vertices of P are ordered from u to v. If
w ∈ P , then w+ indicates the vertex following w (if w 6= v). Similarly w−

* This work was supported by an operating grant from the Natural Sciences and Engi-

neering Research Council of Canada.

1

indicates the vertex preceding w (if w 6= u). If x, y ∈ P are such that x
precedes y in this ordering, we write x < y on P .

If u → v then we have a cycle C = P +uv. As G is connected, there is
a vertex w ∈ P such that w → y, where y 6∈ P . Hence there exists a longer
path P ∗ := P − ww+ + wy. (The only time no such w exists is when C is
a hamilton cycle.) Fig. 1 shows a cycle C = P + uw −ww− + vw− formed
by a “crossover” pattern.

vww–u

Fig. 1, uv-path P and trail Q = (u,w,w−, v)

Shown in Fig. 2 are some sample cycles C, where V (C) = V (P), such
that C contains 3 edges not in P .

u vw xx–w–u vw
x x+

w–

w+
u v

w
xx– u v

w w+
x

x+

u v
w

xx–
w–

Fig. 2, Crossovers of order 2

1.1 Definition. Let P be a uv-path. A crossover Q is a uv-trail such
that V (Q) ⊆ V (P) and C := P ⊕ Q is a cycle with V (C) = V (P). (⊕
indicates the operation of exclusive-OR, applied to the edges of P and Q.)
The order of a crossover Q is the number |P ∩Q|. A cross-edge is any edge
xy ∈ E(Q) − E(P).

So a crossover of order 0 occurs when u → v. Then Q = (u, v) and
C = P + uv. There is one crossover of order 1, shown in Fig. 1. There are
5 possible kinds of crossovers of order 2, shown in Fig. 2.

We want to find a crossover because we can then convert P into a
cycle C = P ⊕ Q. We can then find a vertex w ∈ C such that w → y 6∈ C .
This gives a new path P ∗ := P − ww+ + wy that is longer than P . We
can now set P := P ∗, and repeat the process of extending P and looking

2

for a crossover. Eventually we either find a hamilton path in G, or else
we reach a situation where P has no crossover. It is easy to prove that if
deg(u)+deg(v) ≥ n−1, for all non-adjacent vertices u and v, then there will
always be a crossover of order ≤ 1, and that a hamilton path can always be
found in this way. This method was used in the Groups & Graphs program
[5] to look for long paths. It works very well in graphs with many edges,
even if the condition deg(u)+deg(v) ≥ n− 1 is not satisfied. But in graphs
with few edges, it does not often find a long path. The methods described
in this paper provide a means of improving the algorithm substantially.

To find a crossover, we have to do an exhaustive search of all the
possibilities. We build a trail Q from u such that V (Q) ⊆ V (P). So Q
is always a uw-trail for some w ∈ P . We say the order of the trail Q is
|P ∩ Q|. If at any point, w → v, then Q + wv will be a crossover iff P ⊕Q
is a cycle. A recursive algorithm for finding a crossover is given here. The
number of trails from u is typically exponential in n, the number of vertices
of G. We therefore choose a maximum order M , and limit the search for
crossovers up to that order.

M is a global variable, indicating the maximum allowable order.
P is a global variable, a uv-path.

u and v are global variables, the endpoints of P .
Q is a global variable, a uw-trail, such that V (Q) ⊆ V (P).
CrossOver is a global boolean variable

FindCrossover(w: vertex; k: integer)
{ Extend trail Q from vertex w. The current order of Q is k }
begin

CrossOver := false { assume no crossover will be found }
if k > M then Exit
if w → v then check if Q + wv is a valid crossover
if so, set CrossOver := true and Exit
for all x → w, such that x ∈ P − Q, x 6= w±, and deg(x,Q) ≤ 2 do
begin

Q := Q + wx
if x 6= u then if xx− 6∈ E(Q) then begin

Q := Q + xx−

FindCrossover(x−, k + 1)
if CrossOver = true then Exit
Q := Q − xx−

end
if x 6= v then if if xx+ 6∈ E(Q) then begin

Q := Q + xx+

FindCrossover(x+, k + 1)

3

if CrossOver = true then Exit
Q := Q − xx+

end
Q := Q − wx

end
end { FindCrossover }

The algorithm is executed by choosing a value for M , initiallizing Q = (u),
and calling FindCrossover(u, 0). It builds trails Q satisfying the following
intersection property.

1.2 Property. Let P be a uv-path, and let Q = (w0, w1, . . . , wm) be a
uw-trail, where w0 = u, wm = w, and V (Q) ⊆ V (P). Then Q has the
intersection property if for each wi, where 1 ≤ i < m, exactly one of wi+1

and wi−1 equals w±
i .

1.3 Theorem. If G has a crossover Q of order k, then there exists a
crossover Q′ = (w0, w1, . . . , wm) of order k such that P ⊕Q′ = P ⊕Q, and
Q′ has the intersection property.
Proof . Let Q = (w0, w1, . . . , wm) be a crossover of order k, where w0 = u
and wm = v. Then C = P ⊕Q is a cycle, so every vertex of C has degree 2.
The edges of P and Q can be divided into those of P −Q, Q−P , and P ∩Q.
If w ∈ C then deg(w, C) = deg(w, P) + deg(w, Q) − 2deg(w,P ∩ Q) = 2.
Therefore deg(w, Q) = 2 + 2deg(w, P ∩ Q) − deg(w, P) ≤ 2 + deg(w,P) ≤
4. If deg(w, Q) = 2, then deg(w,P) = 2 and deg(w, P ∩ Q) = 1. So
w = wi where 1 ≤ i < m, and exactly one of wi+1 and wi−1 equals w±. If
deg(w, Q) = 3, then deg(w,P) = 1, so that w is one of u or v. If deg(w, Q) =
4, then deg(w, P) = 2 and deg(w,P ∩ Q) = 2. Edges ww+ and ww− are
both in Q. Two vertices wi and wj of Q correspond to w. If the theorem is
not true, we can assume that one of wi and wj , say wi, has {wi+1, wi−1} =
{w+, w−}. Write Q = (w0, . . . , w

±, wi, w
∓, . . . , wj, . . . , wm). Since wi =

wj = w, we can reverse the portion of Q between wi and wj to get a
crossover Q′ = (w0, . . . , w

±, wi, wj−1, . . . , w
∓, wi, wj+1, . . . , wm). Q′ has

two fewer vertices at which the intersection property does not hold. We
can continue until Q is transformed into a crossover of the required type.

1.4 Lemma. When FindCrossover(w,k) is entered, Q = (w0, w1, . . . , wm)
is a trail of order k from u = w0 to w = wm satisfying the intersection
property.
Proof . By induction on k. This is true intially when k = 0 and Q = (w0)
where w0 = u. When FindCrossover(w, k) is entered, it first checks whether
w → v. If so, Q + wv will be a crossover of order k iff P ⊕ Q is a cycle.
Otherwise all x → w are considered, such that x ∈ P − Q, x 6= w± and
deg(x,Q) ≤ 2. For each such x, Q is extended by the edge wx, so wm+1 = x.

4

Notice that wm+1 6= w±. Then Q is in turn extended by the edges xx− and
xx+ if possible, and a recursive call is made, increasing k by 1 since the edge
xx± ∈ P ∩ Q. Notice that wm+2 = x±, so that the condition that exactly
one of wi+1 and wi−1 equals w±

i is satisfied at the 2 new vertices wm+1

and wm+2. The condition deg(x,Q) ≤ 2 is required since deg(x, Q) will be
increased by 2 (edges wx and xx±), and we must always have deg(x, Q) ≤ 4.
By induction the trails Q constructed satisfy the intersection property.

1.5 Theorem. FindCrossover will find a crossover iff G contains a cross-
over of order k ≤ M .

Proof . By lemma 1.3 if G has a crossover of order k, then it has a crossover
of order k with property 1.2. Since the algorithm recursively builds all trails
with this property, it will find a crossover if one exists.

Most of the operations in the algorithm can be implemented quite
easily. The difficult one is to check whether Q+wv forms a valid crossover.
We must determine whether C = P ⊕ Q is a cycle or not. The conditions
imposed on Q ensure that deg(w,C) = 2 for every w ∈ P . However it is
most often the case that C is a union of several cycles, instead of a single
cycle. The most direct way to test Q is to start at u and follow the edges
of P ⊕Q until we return to u. If the number of edges traversed is `(P)+ 1,
then Q is a crossover. The trouble with this is that it takes up to `(P) + 1
steps to execute. Most of the trails constructed will not be crossovers, and
this means too much time spent checking invalid trails.

1.6 Definition. Let P be a uv-path, and Q a trail from u with property
1.3. A segment of P with respect to Q is any connected component of
P − E(Q). S(Q) is the set of segments of P wrt Q.

The segments that we will be dealing with are the segments created by
the FindCrossover algorithm above. Initially when Q = (u), there is only
one segment P . In the first crossover of Fig. 2 there are three segments
Pux− , Pxw, Pw+v, where Pxy denotes the sub-path of P from x to y. The
number of segments always equals k + 1, where k is the order of Q. Since
each segment is a sub-path of P , it has 2 endpoints. Each endpoint will
usually be connected to another vertex of P by a cross-edge.

1.7 Definition. The segment graph of P with respect to Q is SG(Q).
Its vertices are the segments S(Q). Segments Si, Sj ∈ S(Q) are adjacent if
there is a cross-edge connecting an endpoint of Si to an endpoint of Sj.

An example of a trail Q and its segment graph SG(Q) is illustrated in
Figs. 3 and 4. In Fig. 4, the 2 endpoints of each Si are also shown.

5

vwu w+x+x y y+z z+

S1 S2 S3 S4 S5

Fig. 3, A uw-trail Q of order 4

S3 S5

z+, w y+, v

u, x

S1

x+, zS2

w+, y

S4

Fig. 4, The segment graph SG(Q)

1.8 Lemma. There is a one-to-one correspondence between the compo-
nents of P ⊕Q and the components of SG(Q).

Proof . The segments are the connected components of P − E(Q). Each
connected component of P ⊕ Q consists of segments connected by cross-
edges. In SG(Q) the segments are represented as vertices.

If Q is a uw-trail, the components of P ⊕ Q will consist of a path
connecting v to w, and possibly several cycles. When FindCrossover(w,k)
is entered, w is the endpoint of a segment Si. Si is the endpoint of a path-
component of SG(Q). The other endpoint is a segment containing v. If
w → v, then the addition of edge vw creates a cycle. This gives:

1.9 Lemma. Suppose that w → v when FindCrossover(w,k) is entered.
Then Q + vw is a crossover of order k iff the number of components of
SG(Q) is 1.

So we need to know the number of components of SG. Write N for this
number. Vertex w is an endpoint of a segment Si. If w 6→ v, or if Q+ vw is
not a crossover, a vertex x → w is selected. Then x ∈ Sj, for some j. Given
any vertex x we need to be able to determine the segment Sj containing x,
and the component of SG containing Sj. Edges xx+ and xx− are in turn
added to Q. This splits Sj into two segments. There are three possible
situations that can arise.

6

Si

Sj

w v
x

x±

Fig. 5, Case 1, a segment is split

1. Si and Sj are in different components of SG. N decreases by 1.
In this case, w and x are in different components of P ⊕Q. The cross-
edge wx connects the two. Since Sj is in a cycle of SG, x and x± will
still be connected when the edge xx± has been deleted. x± becomes
the new endpoint of the component containing Si.

w v

Si Sj

xx∓ x±

Fig. 6, Cases 2 and 3, a segment is split

2. Si and Sj are in the same component of SG. N increases by 1.
In this case, w and x are in the same component of P ⊕ Q, a path
connecting w to v. The path is split into two paths when xx± is
deleted. If x± lies between x and v on this path, Si will split into a
cycle and a path.

3. Si and Sj are in the same component of SG. N is unchanged.
This is like case 2 above, except that x± lies between w and x on the
path. The path component is rerouted but remains a path.

Therefore we can keep track of the number of components of SG as follows.
Initially, N = 1. w is in segment Si, which is part of a path component of
SG. When x → w is selected, we determine which segment Sj contains x.
We then determine which component Sj is in. If Si and Sj are in different
components then N := N − 1. If they are in the same component, we need
to distinguish cases 2 and 3. If case 2 applies, we then execute N := N +1.

The use of the segment graph allows us to determine immediately
whether Q+vw is a crossover or not. There is some extra overhead involved,

7

since the segment graph must be constructed. We represent the path P as
a linked list of nodes.

NodePtr = ∧Node
Node = record

Pt: Integer (a point x on the path)
NextNode: NodePtr (the next node x+ on the path)
PrevNode: NodePtr (the previous node x− on the path)

end

A segment is represented by a data structure containing the following items.

SegmentPtr = ∧Segment
Segment = record

LeftPt, RightPt: Integer (left & right endpoints of segment)
LeftSeg: SegmentPtr (adjacent segment on left)
RightSeg: SegmentPtr (adjacent segment on right)
LeftAdjPt: Integer (adjacent pt in segment on left)
RightAdjPt: Integer (adjacent pt in segment on right)

end

The operations which must be perfomed on the segments are as follows.

• Given any vertex x, we need to be able to determine quickly which
segment Sj contains x.

This can be accomplished by keeping the segments in a binary
tree. Each segment has a left endpoint and a right endpoint, which
defines an ordering on the segments. The number of segments equals
k + 1, where k is the order of Q. Since this is limited to a previously
chosen maximum M , searching the tree will be fast.

• Given any segment Si we need to be able to determine which compo-
nent of SG contains Si.

This can be accomplished by keeping a representative segment for
each component, and using a “merge-find” array [1] of pointers toward
the representative.

• If Si and Sj are in the same component, we neeed to distinguish be-
tween cases 2 and 3.

One way to do this is to follow the path in SG containing x± until
a segment is encountered whose endpoint is either w or v. The path-
component of SG corresponds to a vw-path in P ⊕ Q; however we do
not follow the path in P ⊕ Q, since its length is O(`(P)). The length
of the path-component of SG is limited by the number of segments,
which is ≤ M . Therefore this will be fast.

There are a number of other details which must be considered when the
algorithm is programmed. These will become apparent to anyone program-
ming it.

8

Some results of the implementation of the algorithm to find crossovers
up to order M = 10 are listed below. Results are shown for the Horton
graph and the Grinberg graph (see [4] for a description of these graphs).
These are non-hamiltonian 3-regular graphs on 92 and 46 vertices, respec-
tively. The tables show the number of edges in the longest path P that
was found, starting from vertex x, and the time taken. The numbering of
the vertices is arbitrary. Its only significance is that `(P) depends on the
starting vertex. The program ran under System 7.1 on a Macintosh IIfx
with 20 Meg of RAM. 1 tick = 1

60 sec.

x # ticks `(P)
1 11 40
2 10 42
3 10 41
4 15 42
5 13 42
18 10 51
19 11 67
20 11 46
21 11 59
40 11 42
41 10 42
42 10 36
43 10 44
44 10 44
56 11 42
57 10 36
58 10 30
59 10 36
66 11 66
67 12 61
68 12 64
69 12 51
88 10 60
89 12 42
90 11 58
91 11 42
92 10 31

Horton graph, 92 vertices

9

x # ticks `(P)
1 14 45
2 18 45
3 11 45
4 14 45
5 14 45
6 13 45
16 7 29
17 9 45
18 11 45
19 17 45
20 11 45
40 14 45
41 7 29
42 6 29
43 13 45

Grinberg graph, 46 vertices

Notice that for the Grinberg graph, a hamilton path was found in most
cases, even though each vertex has degree 3 only. For the Horton graph,
which has a hamilton path, the longest path found was usually much too
short. The next section describes a method of improving the performance.

2. Inner Vertices.

Let P be a uv-path in G, and let H = G−V (P). H is a subgraph of G. We
call the vertices of H the inner vertices of G with respect to P . H consists
of a number of connected components H1, H2, . . . , Hk, where k ≥ 1. If
x, y ∈ V (P), then Pxy denotes the xy-subpath of P . Suppose that some
component Hi contains vertices a and b and let Rab denote an ab-path in
Hi. If ∃x, y ∈ V (P) such that a → x, b → y, and `(Rab) + 2 > `(Pxy),
then we can construct a path longer than P by replacing Pxy with the path
(x, a, . . . , b, y) through H. Any path Rab ⊆ H connecting x, y ∈ P is called
an xy-bypass.

The components of H can easily be found by either a breadth-first
search or depth-first search, and both of these search methods will construct
a spanning tree for each Hi. Let Ti be a spanning tree of Hi. Then Ti

contains a unique ab-path Rab, for all a, b ∈ V (Hi). Since we are looking
for a long path, and a DFS tends to construct longer paths than a BFS, we
use a DFS. Given any a and b, we need to be able to determine quickly the
length of Rab, and to find this path if it is to replace Pxy .

Let r0 denote the root of a DF-tree T . The edges of T are called
tree-edges. For each v ∈ V (T), define

10

D(v) = the DF-number of v, the order in which the vertices are visited;
a(v) = the parent of v in T ;
r(v) = the rank of v, its distance in T from r0;

If we start at any vertex v ∈ T and successively construct v0 = v,
v1 = a(v0), v2 = a(v1), etc., we eventually reach the root r0. Let Tv denote
this path (v0, v1, . . . , r0). We then further define

b(v) = the branch point of v. This is defined as follows:
b(r0) = r0. If v 6= r0, let u = a(v). Then

b(v) =

{
b(u), if uv is the first tree-edge incident on u
u, otherwise.

s(v) = the stem of the branch containing v; namely s(v) is the unique
vertex w ∈ Tv such that a(w) = b(v). s(r0) is not defined.

These quantities are easily computed by the DFS. DFCount is a global
counter initially set to 0. D(v) is initially set to 0 for all v. r(r0) and a(r0)
are intiallized to 0, and b(r0) is initiallized to r0.

DFS(u)
begin

DFCount := DFCount + 1
D(u) = DFCount
FirstTime := true { indicates first tree-edge incident on u }
for each v → u do if D(v) = 0 then begin

a(v) := u; r(v) := r(u) + 1
if FirstTime then b(v) := b(u) else b(v) := u
s(u) := v { temporary assignment for the branch to be searched }
DFS(v)
FirstTime := false

end
s(u) := s(b(u))

end { DFS }

The leaves of T are those those vertices with no descendants. Write L(T)
for the set of leaves of T . For each v ∈ V (T), Pv denotes the path in T
from v to b(v).

2.1 Lemma. {Pw | w ∈ L(T)} is a partition of T into paths.
Proof . By induction on |L(T)|. If |L(T)| = 1, then T consists of a path
from v ∈ L(T) to r0 = b(v). Assume the result is true when |L(T)| ≤ k,
and suppose that T has k + 1 leaves. Let v be the last leaf of T visited by
the DFS. Let u = b(v). Pv is a path from v to u. Then T ′ = T − Pv is a
tree with k leaves, such that L(T ′) = L(T) − {v}. Since the result holds
for T ′, we have {Pw | w ∈ L(T)} = {Pw | w ∈ L(T ′)} ∪ {Pv} is a partition
of T into paths.

11

Given these data structures, we can compute `(Rab) given any a, b ∈ Hi.

w := a; z := b; ` := 0
while b(w) 6= b(z) do begin

if D(b(w)) < D(b(z)) then ` := ` + r(z) − r(b(z)); z := b(z)
else ` := ` + r(w) − r(b(w)); w := b(w)

end
if s(w) = s(z) then `(Rab) := ` + |r(w) − r(z)|
else `(Rab) := ` + r(w) + r(z) − 2r(b(w))

2.2 Lemma. The above statements correctly compute `(Rab).
Proof . If w and z have the same branch point, then either they are in the
same branch of T at b(w), in which case s(w) = s(z), or else they are
in different branches, in which case s(w) 6= s(z). If they are in the same
branch, then either Pw ⊆ Pz or Pz ⊆ Pw. The distance between w and z
on this path is |r(w)− r(z)|. If they are in different branches, then Pw and
Pz are both paths to b(w), of lengths r(w) − r(b(w)) and r(z) − r(b(z)).
Therefore `(Rwz) = r(w) + r(z) − 2r(b(w)).

If b(w) 6= b(z), then the branch point with the larger DF-number, say
b(z), is chosen. The path Rwz contains Pz as a subpath. Its length is
r(z) − r(b(z)). This is added to the cumulative length `.

The path Rab can be easily constructed.

w := a; z := b
while w 6= z do

if D(w) < D(z) then z := a(z)
else w := a(w)

The algorithm to find a long path is now altered as follows. First, crossovers
are used to find a path P as long as possible with no crossover of order
≤ M . Then the inner vertices are used to create a longer path. For each
component Hi, a spanning tree Ti is constructed. As Ti is built, a linked
list Ai is formed consisting of all vertices y ∈ P such that y is adjacent to
some b ∈ Hi. The vertex b is saved in the node of Ai corresponding to y.

for each x ∈ P do
for each a → x do if a 6∈ P then begin

find i such that a ∈ Hi

if Ti has not been built then construct Ti and the list Ai

for each y ∈ Ai do begin
suppose that y → b ∈ Hi

if `(Rab) + 2 > `(Pxy) then
replace Pxy with (x, a, . . . , b, y) and Exit

end
end

12

If a sufficiently long bypass Rab is found, then P is replaced by a longer
path. This changes the inner vertices H = G − V (P) so that the spanning
trees Ti and lists Ai must be discarded. The new path P may now have
a crossover, so the algorithm is repeated in order to search for a crossover
again. If no bypass is found this does not mean that one does not exist.
There are too many paths in H to search them all. Therefore the algorithm
constructs a single spanning tree Ti for each Hi and uses only the paths of
Ti.

There is another technique involving the inner vertices that can also be
used to construct a longer path P . Let Rab be a path in H, where x → a,
y → b, and x, y ∈ P . If x− → y− or x+ → y+, then a longer path can be
found as illustrated in Fig. 7.

x yx– y–

vu

a b

x y
vu

a b

x+ y+

Fig. 7, Bypass crossovers

2.3 Definition. Let Rab be an xy-bypass for the uv-path P . A bypass
crossover Q wrt Rab is an xy-trail such that V (Q) ⊆ V (P) and P ⊕Q⊕Rab

is a uv-path. The order of Q is |P ∩ Q|.

The examples of Fig. 7 have bypass crossovers (x, x−, y−, y) and (x, x+,
y+, y) of order 2. As before we pick a maximum order M ′ and search for
crossovers of order ≤ M ′. The algorithm FindBypassCrossover(w, k) is
similar to FindCrossover. An xw-trail Q with an intersection property
similar to 1.2 is constructed. We build the segment graph SG(Q) whose
vertices are the components of P ⊕Q. We do not use the edges Rab except
for rerouting the path once the bypass crossover is found. The components
of SG consist now of two paths, and possibly some cycles. The components
of P ⊕ Q include a ux-path and a yv-path. At each iteration, the vertices
w+ and w− are considered. If one of these equals y, there exists an xy-
trail. If the number of components N = 2, then Q + yw is a valid bypass
crossover. Otherwise recursion is used up to k = M ′.

The complete algorithm can now be summarised as follows. x is any
given vertex of a graph G.

13

LongPath(x)
{ construct a long path containing vertex x }
begin

u := x; v := x; P := (x)
extend P from u and v
while P is not a hamilton path do begin

Q := (u)
FindCrossover(u, 0)
if a crossover Q was found then begin

extend P to a cycle C := P ⊕ Q
find w ∈ C such that w → y 6∈ P
P := C + wy − ww+; u := w+; v := y; go to 1

end
construct the components H1, . . . , Hk of H := G − V (P)
for each x ∈ P do

for each a → x such that a 6∈ P do begin
find i such that a ∈ Hi

if Ti does not yet exist, then construct Ti and Ai

for each y ∈ Ai do begin
y → b ∈ Hi; Rab ⊆ Hi is an ab-path
if b > a on P then begin

if `(Rab) + 2 > `(Pxy) then
reroute P via Rab and go to 1

Q := (x)
FindBypassCrossover(x, 0)
if a crossover Q was found then

set P := P ⊕ Q ⊕ Rab and go to 1
end

end
end

at this point, P cannot be extended further ⇒ Exit
1: extend P from u and v
end { while }

end { LongPath }

The results of using the inner vertices and bypass crossovers is illus-
trated for the same two graphs as before, the Horton graph and Grinberg
graph. The tables following are for crossovers of order ≤ 6 and bypass
crossovers of order ≤ 2. The tests were done on the same computer in the
same configuration. The use of the inner vertices makes a noticeable dif-
ference in performance. Timings were done for a number of other graphs,
too. The results are similar. The length of the path found can be improved
slightly for some starting vertices x by increasing the maximum orders M

14

and M ′. However this requires a substantial increase in execution time,
and does not seem worthwhile.

x # ticks `(P)
1 20 90
2 23 86
3 19 86
4 25 90
5 18 88
18 58 89
19 28 83
20 36 88
21 21 92
40 43 88
41 21 88
42 23 86
43 27 86
44 28 86
56 22 88
57 26 86
58 31 88
59 23 86
66 52 92
67 35 86
68 43 90
69 32 86
88 25 84
89 43 88
90 31 84
91 42 88
92 23 89

Horton graph, 92 vertices

x # ticks `(P)
1 14 45
2 18 45
3 11 45
4 14 45
5 14 45
6 13 45
16 10 43
17 9 45
18 11 45

15

19 17 45
20 11 45
33 9 43
35 11 43
40 14 45
41 9 41
42 8 44
43 13 45

Grinberg graph, 46 vertices

Complexity

Suppose that G is a r-regular graph. The algorithm FindCrossover(w,k)
considers all x → w. Then FindCrossover(x+, k+1) and FindCrossover(x−,
k+1) may be called recursively. This builds all trails Q from u with property
1.2. If Q has order k, the length of Q is 2k + 1. The number of such trails
is at most r of order 0, 2r2 of order 1, 4r3 of order 2, etc., giving at most∑M

k=0(2r)
kr = O((2r)M+1) trails in total. If M is fixed as a reasonably

small constant, this will be an acceptable polynomial in r.

The FindCrossover algorithm is presented as a depth-first search. Gi-
ven the uw-trail Q, it picks x → w and tries to extend Q + wx + xx+

to a crossover up to order M before any other vertices adjacent to w are
considered. That is, it may overlook a crossover of order 2 in order to find
one of order 5. The algorithm can be made to run faster by programming it
instead as a breadth-first search. However the program will be longer. We
have chosen the depth-first search here to make the presentation simpler.

3. Conclusion

Crossovers are very effective in constructing a long path in a graph. This
algorithm is based on theoretical techniques used to prove graphs hamil-
tonian. See [2,3], for example. The algorithm often finds a hamilton path
even when the theoretical conditions needed to prove G hamiltonian don’t
apply. A very similar algorithm can be constructed to find a long cycle in
G, rather than a long path.

Question. Given a path P of length ` in a 2-connected graph G with
n vertices, where ` < n − 1, and given values M and M ′, what is the
maximum number of edges that G can have if there is no crossover of order
≤ M , no bypass extending P , and no bypass crossover of order ≤ M ′? Give
a construction for such graphs.

16

References

1. A. Aho, J. Hopcroft, and J. Ullman, The Design and Analysis of Com-
puter Algorithms , Addison Wesley, Toronto, 1974.

2. Douglas Bauer and Edward Schmeichel, “A simple proof of an exten-
sion of Ore’s theorem”, Ars Combinatoria 24B (1987), 93-99.

3. D. Bauer, A. Morgana, and E.F. Schmeichel, “A short proof of a the-
orem of Jung”, Discrete Math. 79 (1990), 147-152.

4. J.A. Bondy and U.S.R. Murty, Graph Theory with Applications , Amer-
ican Elsevier Publishing, New York, 1976.

5. William Kocay, “Groups & Graphs, a MacIntosh application for graph
theory”, Journal of Combinatorial Mathematics and Combinatorial
Computing 3 (1988), 195-206.

17

