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A partial Steiner triple system (PSTS) of order n is a collection of 3-element
subsets of the vertex set {1,2,...,n} called triples that pairwise intersect
in at most one vertex. If H is a PSTS and x is a vertex, then the degree
of z is d, and is the number of triples in H that contain z. The sequence
D = (d1,ds, ... ,d,) is called the degree sequence of the PSTS H, and we
assume without loss that dqy > ds > ... > d,.

Theorem Let D = (dy,ds,... ,d,) be the degree sequence of a PSTS H,
where dy > dg > -+ > dn. Then Y.;d; = 0 (mod 3), and the following
conditions hold for k =1,2,... ,n.
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Proof. Let Vi, = {1,2,... ,k} and let V, = {k+ 1,k +2,...,n}, A triple

T is an (3,3 — 1) triple if |T'N V| = 4 and |TﬁV—k} =3 — 1. Let N; be the
number of (¢,3 — 1) triples, ¢ = 0,1,2,3. Also let N;(z) be the number of
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(4,3 — i) triples that contain the vertex z. Summing N;(z) over all = € Vj,
counts each (7,3 — i) triple i times, thus for i = 0, 1,2, 3 we have
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Similarly, summing over y € V;, we obtain for i = 0,1,2,3
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vV
The number of points of intersection with triples and Vj, is
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This last follows from Equation 2. For y € Vi, we have
Na(y) + Ni(y) < Na(y) + Ni(y) + No(y) = d,,.

Counting the number of points in Vj, that are in triples that contain y we
see that

Na(y) + Ni(y) < 2N2(y) + Ni(y) < k,

because each type (i, 3 —1) triple contains 4 points of V}, and any two triples
that contain a fixed point y cannot intersect in another point. Thus
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Every type (2,1) triple contains one of the (’Zc) possible pairs in V}, and
every type (3,0) contains 3. In a PSTS no pair is covered twice, thus
3N3 + Ny < (’2“), and hence
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Now for y € Vi we have Na(y) < L%J, so summing over y € Vi, we see that
Equation 2 gives Na < (n— k) |k/2]. For z € Vi, we have Na(z) < (k—1).
Thus using Equation 1 to sum over z € Vi we obtain 2N, < k(k —1).
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These 2 observations yield
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We conjecture that the conditions in the theorem are also sufficient. It
should be noted that the condition obtained when k = 1 is that 2d; < n.
This is obviously necessary as the triangles containing a given point must
otherwise be disjoint. In [1] the authors show that 2r < n and rn = 0
(mod 3) are necessary and sufficient for the existence of a partial Steiner
triple system with degree sequence (r,ryr,...,7). This latter result also
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follows from the results in [2]. A partial Steiner triple system is said to

be equitable if |d; — dy| < 1 for any two points and y. In [2] it is
shown that if there exists a partial Steiner triple system of order n with b
triples, then there exists an equitable partial Steiner triple system of order
n with b triples. Thus, by taking a maximum packing of triples on n points,
deleting the appropriate number of triples, and applying this result, one can
obtain a partial Steiner triple system in which all the vertices have degree
r, whenever 2r < n and rn =0 (mod 3).
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