Degree sequence conditions for partial Steiner triple systems

Melissa S. Keranen
Donald L. Kreher
Mathematical Sciences,
Michigan Technological University,
Houghton, Michigan,
49913-0402, USA

William Kocay
Pak Ching Li
Computer Science,
University of Manitoba,
Winnipeg, Manitoba
Canada, R3T 2N2

July 2, 2009

A partial Steiner triple system (PSTS) of order n is a collection of 3-element subsets of the vertex set $\{1, 2, \ldots, n\}$ called triples that pairwise intersect in at most one vertex. If \mathcal{H} is a PSTS and x is a vertex, then the degree of x is d_x and is the number of triples in \mathcal{H} that contain x. The sequence $D = (d_1, d_2, \ldots, d_n)$ is called the degree sequence of the PSTS \mathcal{H} , and we assume without loss that $d_1 \geq d_2 \geq \ldots \geq d_n$.

Theorem Let $D = (d_1, d_2, ..., d_n)$ be the degree sequence of a PSTS \mathcal{H} , where $d_1 \geq d_2 \geq \cdots \geq d_n$. Then $\sum_{i=1}^{n} d_i \equiv 0 \pmod{3}$, and the following conditions hold for k = 1, 2, ..., n.

$$\sum_{i=1}^{k} d_i \leq \frac{3}{2} {k \choose 2} + \frac{1}{2} \sum_{j=k+1}^{n} \min\{k, d_j\}, \qquad if \ k \leq \frac{n}{2}$$

$$\sum_{i=1}^k d_i \leq \binom{k}{2} + \frac{1}{2}(n-k) \left\lfloor \frac{k}{2} \right\rfloor + \frac{1}{2} \sum_{j=k+1}^n \min\{k, d_j\}, \quad \text{if } k > \frac{n}{2}.$$

Proof. Let $V_k = \{1, 2, ..., k\}$ and let $\overline{V_k} = \{k+1, k+2, ..., n\}$, A triple T is an (i, 3-i) triple if $|T \cap V_k| = i$ and $|T \cap \overline{V_k}| = 3-i$. Let N_i be the number of (i, 3-i) triples, i = 0, 1, 2, 3. Also let $N_i(x)$ be the number of

(i, 3-i) triples that contain the vertex x. Summing $N_i(x)$ over all $x \in V_k$ counts each (i, 3-i) triple i times, thus for i=0,1,2,3 we have

$$\sum_{x \in V_k} N_i(x) = i \cdot N_i. \tag{1}$$

Similarly, summing over $y \in \overline{V_k}$ we obtain for i = 0, 1, 2, 3

$$\sum_{y \in \overline{V_k}} N_i(y) = (3 - i) \cdot N_i. \tag{2}$$

The number of points of intersection with triples and V_k is

$$\begin{split} \sum_{x \in V_k} d_x &= 3N_3 + 2N_2 + N_1 = 3N_3 + \frac{3}{2}N_2 + \frac{1}{2}N_2 + N_1 \\ &= 3N_3 + \frac{3}{2}N_2 + \sum_{y \in \overline{V_k}} \left(\frac{1}{2}N_2(y) + \frac{1}{2}N_1(y)\right) \\ &= 3N_3 + \frac{3}{2}N_2 + \frac{1}{2}\sum_{y \in \overline{V_k}} \left(N_2(y) + N_1(y)\right) \end{split}$$

This last follows from Equation 2. For $y \in \overline{V_k}$, we have

$$N_2(y) + N_1(y) \le N_2(y) + N_1(y) + N_0(y) = d_y.$$

Counting the number of points in V_k that are in triples that contain y we see that

$$N_2(y) + N_1(y) \le 2N_2(y) + N_1(y) \le k$$

because each type (i, 3-i) triple contains i points of V_k and any two triples that contain a fixed point y cannot intersect in another point. Thus

$$\sum_{x \in V_k} d_x \leq 3N_3 + \frac{3}{2}N_2 + \frac{1}{2} \sum_{y \in \overline{V_k}} \min\{d_y, k\}$$

Every type (2,1) triple contains one of the $\binom{k}{2}$ possible pairs in V_k and every type (3,0) contains 3. In a PSTS no pair is covered twice, thus $3N_3 + N_2 \leq \binom{k}{2}$, and hence

$$\sum_{x \in V_k} d_x \leq \binom{k}{2} + \frac{1}{2} N_2 + \frac{1}{2} \sum_{y \in \overline{V_k}} \min\{d_y, k\}.$$

Now for $y \in \overline{V_k}$ we have $N_2(y) \leq \lfloor \frac{k}{2} \rfloor$, so summing over $y \in \overline{V_k}$ we see that Equation 2 gives $N_2 \leq (n-k) \lfloor k/2 \rfloor$. For $x \in V_k$ we have $N_2(x) \leq (k-1)$. Thus using Equation 1 to sum over $x \in V_k$ we obtain $2N_2 \leq k(k-1)$. Consequently

$$N_2 \le \min\{\frac{k(k-1)}{2}, (n-k) \left\lfloor \frac{k}{2} \right\rfloor\} = \begin{cases} \binom{k}{2}, & \text{if } k \le \frac{n}{2} \\ (n-k) \left\lfloor \frac{k}{2} \right\rfloor, & \text{if } k > \frac{n}{2} \end{cases}$$

These 2 observations yield

$$\sum_{x \in V_k} d_x \leq \begin{cases} \frac{3}{2} \binom{k}{2} + \frac{1}{2} \sum_{y \in \overline{V_k}} \min\{k, d_y\}, & \text{if } k \leq \frac{n}{2} \\ \binom{k}{2} + \frac{1}{2} (n - k) \left\lfloor \frac{k}{2} \right\rfloor + \frac{1}{2} \sum_{y \in \overline{V_k}} \min\{k, d_y\}, & \text{if } k > \frac{n}{2}. \end{cases}$$

We conjecture that the conditions in the theorem are also sufficient. It should be noted that the condition obtained when k=1 is that $2d_1 < n$. This is obviously necessary as the triangles containing a given point must otherwise be disjoint. In [1] the authors show that 2r < n and $rn \equiv 0 \pmod{3}$ are necessary and sufficient for the existence of a partial Steiner triple system with degree sequence (r, r, r, \ldots, r) . This latter result also

follows from the results in [2]. A partial Steiner triple system is said to be equitable if $|d_x - d_y| \leq 1$ for any two points x and y. In [2] it is shown that if there exists a partial Steiner triple system of order n with b triples, then there exists an equitable partial Steiner triple system of order n with b triples. Thus, by taking a maximum packing of triples on n points, deleting the appropriate number of triples, and applying this result, one can obtain a partial Steiner triple system in which all the vertices have degree r, whenever 2r < n and $rn = 0 \pmod{3}$.

References

- [1] M.S. Keranen, D.L. Kreher, W.H. Kocay and B. Li, Regular partial triple systems, *preprint*.
- [2] L.D. Andersen, A.J.W Hilton and E. Mendelsohn, Embedding partial Steiner triple systems, Proc. London Math. Soc. (3) 41 (1980), 557– 576.