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Abstract
Let G and H be graphs on n+2 vertices {u1, ua, ..., un, T, y}
such that G —u; 2 H — uy, for i = 1,2,...,n. Recently Ra-
machandran, Monikandan, and Balakumar have shown in a
sequence of two papers that if n > 9, then |e(H) — ¢(G)| < 1.
In this paper we present a simpler proof of their theorem, using
a counting lemma.

1 Introduction

Let G and H be graphs on n + 2 vertices {uqy,us,...,u,,x,y} such
that G—u; &2 H—uy, fori =1,2,...,n. Recently Ramachandran and
Monikandan [3] and Monikandan and Balakumar [1] have shown in a
sequence of two papers that if n > 9, then |e(H) — ¢(G)| < 1. Their
proof is based on determining the partial structure of the graphs.
In this paper we present a simpler proof of their theorem, using a
counting lemma that requires only the degrees of the vertices.

Let d(u,G) denote the degree of vertex u in any graph G. The
following lemma is from [2].
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Lemma 1.1 Let m > 0 and let G and H be as above. Suppose that
e(H) =e(G)+m. Then d(u;, H) = d(u;, G) +m, fori=1,2,... n.

Proof. d(u;,H) = ¢(H) —e(H —w;) = ¢(G) + m — (G — u;) =
d(’LLZ,G) + m.

Suppose now that m > 2. Choose a vertex uq € U, and let p be
an isomorphism mapping H —uy to G —uy. Then p is a permutation
of V—u;. Let G = G —wu; and H = H — uy. Consider a cycle
(v1,v9,...,v) of p. Is it possible that all v; € U? Let o = d(vy, H').
In H’ there are a edges incident on v1, hence in G’ there are o edges
incident on p(v1) = vg, so d(ve, G') = a. But d(va, H) = d(va, G)+m,
so that d(vy, H') > «a + 1. Continuing in this way, we find that
d(vs, H') > a + 2, ete, until we reach d(vg, H') > o+ k — 1 from
which it follows that d(vi, H') > « + k, a contradiction. It follows
that every cycle of p contains either x or y, so that there are at most
two cycles.

Let H[u,v] denote the number of edges of H joining u to v (either
0 or 1). Consider any u € U, where u # wu;. Since d(u,H) =
d(u,G) + m, we can write:

(a) d(u, H') = d(u,G") +m and H[uy,u] = Gluy,u|; or
(b) d(u,H") = d(u,G’") + m — 1 and Huy,u] =1+ Glug,u]; or
(¢) d(u, H') = d(u,G") + m+1 and Hluy,u] + 1 = Gluy,ul.

Let there be a of the first type, b of the second type, and ¢ of the
third type. Let h = H[uy,x] + Hu1,y] and g = Gluy, z] + Glus, y]

Lemma 1.2 Let m > 1. Then
ma+(m—Db+(m+1)c=mn—-2m+h—g

Proof. We have a + b+ ¢ = n — 1, since there are n — 1 vertices
in U —uy. Then d(uy, H) — d(u1,G) = m = b—c+ h — g, so that
c=b—m+ h— g, from which it follows that a +2b=n+1—h+g.
Hence ma + (m —1)b+ (m+ 1)c =mn —2m + h — g.

If there is a sequence x,v1,v9,...,v; of consecutive vertices in a
cycle of p, where each v; € U, then d(v;, H') increases by m — 1, m,
or m + 1 for each i. If k = n — 1, then starting with d(v,G’") =



d(z, H"), we find that d(vy, H') = d(xz, H') + ma + (m — 1)b + (m +
1)e = mn —2m + h — g+ d(z,H"). If m > 2, this expression is
>2n—4+h—g+d(x,H') >n,if n > 7, since h—g > —2. But each
d(v;, H) < n. Hence we conclude that if n > 7, there are exactly
two sequences of consecutive vertices of U in p, one starting from x,
and one starting from y.

Let x,v1,v9,...,v; be one sequence of consecutive vertices in a
cycle of p, and let y, wy,wo,...,w; be the other, where each v;, w; €
U and k+ j =n — 1. It is convenient to take vg = z and wy = y.
Let there be ay,b,c; vertices of type (a),(b),(c), respectively, in
V1,v2,...,Vk, and ag, b2, c2 in wi,wo, ..., w;.

Lemma 1.3 Let 0<i< k—1. Then
d(vi1, H') = d(vi, H') +m + Glu1, vip1] — Hlu1, vis1]
Similarly, if 0 <i<j—1, then
d(wiy1, H') = d(w;, H') +m + Glur, wit1] — Hlu1, wit1]

Proof. Since p maps H' to G’ we have d(v;y1,G") = d(v;, H'). We
also have d(vi11, H) = d(vi+1, G)+m. But d(viy1, H') = d(viy1, H)—
Hluy,vi41] and d(vit1,G) = d(vit1,G) — Glui,vi11]. The result
follows.

It follows that d(vg, H') = d(x, H') +mai + (m—1)b; + (m+1)c;.
Similarly d(w;, H') = d(y, H') + mas + (m—1)ba + (m+1)c2. Adding
these gives d(vg, H')+d(w;, H') = ma+(m—1)b+(m+1)c+d(x, H')+
d(y, H"), which reduces to mn —2m + h — g+ d(z, H") + d(y, H').

Lemma 1.4 Ifn > 9 then |e(H) — e(G)] < 2.

Proof. We have d(vy, H'),d(wj, H') < n. If m > 2, the above
formula gives mn —2m + h — g +d(z, H') + d(y, H') < 2n, or n <
2m/(m—2)—{h—g+d(x,H")+d(y,H)}/(m—2). Since h—g > —2
and m > 3, this gives n < 8, a contradiction.



At this point we take m = 2 and n > 9. The above formula
becomes

27’L—4—|—h—g+d($,H/) +d(y7H/) = d(vkyH/) +d(wj7H/) (*)

We now abbreviate the notation somewhat, in order to streamline
the proof of the main theorem. We have H' = H—u; and G’ = G—u;.
Here we have chosen u; as a vertex in U with the largest degree in
H. Since we will be working mostly with the graphs H and H’, we
write dz’ = d(z, H') and dy’ = d(y, H'). Similarly for dv; and dw}.
Similarly, we write dx for d(x, H), duy for d(uy, H), etc. We recall
that h = Hluy, x| + H[u1,y] and g = Gluy, z] + Gluy,y]. We write
u — v to indicate that u is adjacent to v.

Theorem 1.5 Let G and H be graphs on n+2 vertices, wheren > 9,
such that H —u; = G —u; fori=1,...,n. Then |e(H)—¢(G)| < L.

The proof requires only the degrees of the vertices. We assume
that e(H) = ¢(G) + 2 and obtain a contradiction. We use the in-
equality (*) to limit the values of the parameters dz’, dy’, dvj,, dw’,
and compare the smallest degrees of H — vy, H — wy, G — vy, and
G — w1 .

Case 1. dx' =dy' = 0.

This implies that dv,dw; <n — 2. It then follows from (x) that
2n—4+4+h—g < 2n—4, so that h < g. We observe first that if h =0,
then H and H” both have at least two vertices of degree 0 (namely
x and y), whereas G has at most one vertex of degree 0 (namely v;
or wy). Therefore H” 2 G”. Hence, we can assume that h > 1.

If h =1, then H — vy and H — wy both have exactly one vertex
of degree 0. Therefore G —v; and G — wy must each have one vertex
of degree 0. It follows that u; 4 vy, w; in G. But then G — vy has
two vertices of degree 0, whereas H — v9 has just one. Hence, we can
assume that h = 2.

We now find that H — v; and H — w; both have exactly two
vertices of degree 1. Therefore G — v; and G — w; also have ex-
actly two vertices of degree 1. Therefore uy — v1,w in G, so that
d(v1,G) = d(w1,G) = 1, and one of vy, wy has degree 1 in G. Conse-
quently dv; = dwy = 3, so that dv],dw] > 2. But this implies that
d(va, G"),d(w2,G") > 2, a contradiction.



Case 2. dz’ # 0 and dy’ = 0.

This implies that dvj,dw} <n — 1. It then follows from (*) that
2n—4+4+h—g+dr' <2n—2. Ifu; /= yin H, then H — w; will
have one vertex of degree 0, whereas G — w; will have no vertices of
degree 0. Hence we must have uy — y in H, so that h > 1.

We next observe that in H —w;, vertex y has degree 1. Therefore
G —w must have a vertex of degree 1, which can only be v;. It follows
that u; 4= v; in G, and that 1 = d(v;,G") = da’. Therefore v; is
adjacent to exactly one vertex z in G’, and in H’, z is adjacent to
only p~1(z). Then G — z has a vertex of degree 0, but H — z does
not, a contradiction.

Case 3. dz’ =0 and dy’ # 0.
This is identical to Case 2, interchanging = and ¥, and j and k.

Case 4. d2’ #0 and dy’ # 0.
We have dx’,dy’ > 1. Let 6 = da’+dy’ —2. Then § > 0. Without
loss of generality, we take n > dv;, > dw?.

4.1 dvj, = n. Then duy > dvy, > n. If uy — v in H, then
duy = dvgp = n+ 1, so that w1 — =,y in H, which implies that
h =2 IfIf uy /= v, in H, then since du; > n, we again have
up — 2,y in H and h = 2. By (%), 2n —4+2—g+2+0 = n+dwj,
which reduces to g = n—dwj+4. Now if dw}; = n, then w; — z,yin
H, so that 0 > 2, which implies that g =6 = 2. If dw; =n—1, then
w; is adjacent to at least one of x,y in H, so that § > 1, which gives
g=2and = 1. Ifdwg-:n—2,thisgivesg:2and5:0. So g
always equals 2, and da’, dy’ are forced. They are either (2,2),(2,1)
or (1,1) according as dw’; is n,n—1, or n—2. Note that dw} £ n—3,
since this would give g > 3.

We now find that the two smallest degrees of H — vy and H —w;
are dz’ + 1,dy’ + 1. These must also be the smallest degrees of
G —v; and G — wy. It follows that uq — wv1,w; in G, so that
d(vi,G) = dx’ + 1 and d(wy,G) = dy’ + 1. Therefore dvy, = dx’ + 3
and dw; = dy'+3, so that dvy > dz’+2 and dw); > dy’ +2. But then
the smallest degrees of G — vy and G — w; cannot be da’ +1,dy’ + 1,
a contradiction.

4.2 dvj, =n—1. By (%), we have 2n —4+h—g+2+6 =n—1+duwj,
which reduces to g = n—l+h+5—dw3—. If uy /= v, w; in H, then



since du; > n — 1, we must have u; — z,y in H, so that h = 2. If
uy is adjacent to vy but not to wj, then du; > n, so that we again
have h = 2. Then g =n + 1+ 6 — dw}. We must have dw) =n — 1,
g =2, and § = 0. Therefore dz’ = dy’ = 1.

If u; is adjacent to w; but not to vy, then h > 1. If u; — vy, w;
in H, then du; >n andso h>1. Then g >n—+4§ — dw;-. We either
have dw; = n — 1 (which forces h = 2), g = 2, and § = 0 as in the
previous paragraph, or else dw} =n—2,h=1,9g=2,and § = 0.
Therefore dx’ = dy’ = 1.

In the situation when h = 2, we find that H —v; and H —w; both
have two vertices of degree 2 as the smallest degrees, namely z and
y. Therefore G —wv; and G —w; must also have two vertices of degree
two. Hence uy — vy,w; in G, so that d(v1,G) = d(w1,G) = 2,
from which dvy = dw; = 4 and dv},dw| > 3. But then G — v; and
G — wy do not have two vertices of degree two, a contradiction.

In the situation when h = 1, H — vy and H —w; will have vertices
x and y with degrees 1 and 2. Therefore G — v; and G — w; also
have smallest degrees 1 and 2. It follows that uy; 4= vy, w; in G.
Therefore dv; = dwy; = 3, and u; — vy, w; in H. Then at least one
of H — vy and H — wy will have vertices vy, w; with largest degrees
n —1,n — 2. But since g = 2, the two largest degrees of G — vy and
G — w1 will both be n — 1, a contradiction.

4.3 dvj, = n—2. By (%), we have 2n—4+h—g+2+46 < 2n—4, which
gives ¢ > 2+ h + 4, which requires g = 2, h = 0, and 6 = 0. But
du; > n — 2, so that u; must be adjacent to at least one of vy, w;.
This forces duy; > n, so that h > 1, a contradiction.

This completes the proof of the theorem.
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