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Abstract

LetG andH be graphs on n+2 vertices {u1, u2, . . . , un, x, y}
such that G − ui

∼= H − ui, for i = 1, 2, . . . , n. Recently Ra-
machandran, Monikandan, and Balakumar have shown in a
sequence of two papers that if n ≥ 9, then |ε(H)− ε(G)| ≤ 1.
In this paper we present a simpler proof of their theorem, using
a counting lemma.

1 Introduction

Let G and H be graphs on n + 2 vertices {u1, u2, . . . , un, x, y} such
that G−ui ∼= H−ui, for i = 1, 2, . . . , n. Recently Ramachandran and
Monikandan [3] and Monikandan and Balakumar [1] have shown in a
sequence of two papers that if n ≥ 9, then |ε(H) − ε(G)| ≤ 1. Their
proof is based on determining the partial structure of the graphs.
In this paper we present a simpler proof of their theorem, using a
counting lemma that requires only the degrees of the vertices.

Let d(u,G) denote the degree of vertex u in any graph G. The
following lemma is from [2].
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Lemma 1.1 Let m ≥ 0 and let G and H be as above. Suppose that

ε(H) = ε(G) +m. Then d(ui,H) = d(ui, G) +m, for i = 1, 2, . . . , n.

Proof. d(ui,H) = ε(H) − ε(H − ui) = ε(G) + m − ε(G − ui) =
d(ui, G) +m.

Suppose now that m ≥ 2. Choose a vertex u1 ∈ U , and let p be
an isomorphism mapping H−u1 to G−u1. Then p is a permutation
of V − u1. Let G′ = G − u1 and H ′ = H − u1. Consider a cycle
(v1, v2, . . . , vk) of p. Is it possible that all vi ∈ U? Let α = d(v1,H

′).
In H ′ there are α edges incident on v1, hence in G′ there are α edges
incident on p(v1) = v2, so d(v2, G

′) = α. But d(v2,H) = d(v2, G)+m,
so that d(v2,H

′) ≥ α + 1. Continuing in this way, we find that
d(v3,H

′) ≥ α + 2, etc, until we reach d(vk,H
′) ≥ α + k − 1 from

which it follows that d(v1,H
′) ≥ α + k, a contradiction. It follows

that every cycle of p contains either x or y, so that there are at most
two cycles.

Let H[u, v] denote the number of edges of H joining u to v (either
0 or 1). Consider any u ∈ U , where u 6= u1. Since d(u,H) =
d(u,G) +m, we can write:

(a) d(u,H ′) = d(u,G′) +m and H[u1, u] = G[u1, u]; or
(b) d(u,H ′) = d(u,G′) +m− 1 and H[u1, u] = 1 +G[u1, u]; or
(c) d(u,H ′) = d(u,G′) +m+ 1 and H[u1, u] + 1 = G[u1, u].

Let there be a of the first type, b of the second type, and c of the
third type. Let h = H[u1, x] +H[u1, y] and g = G[u1, x] +G[u1, y]

Lemma 1.2 Let m ≥ 1. Then

ma+ (m− 1)b+ (m+ 1)c = mn− 2m+ h− g

Proof. We have a + b + c = n − 1, since there are n − 1 vertices
in U − u1. Then d(u1,H) − d(u1, G) = m = b − c + h − g, so that
c = b−m+ h− g, from which it follows that a+2b = n+1− h+ g.
Hence ma+ (m− 1)b+ (m+ 1)c = mn− 2m+ h− g.

If there is a sequence x, v1, v2, . . . , vk of consecutive vertices in a
cycle of p, where each vi ∈ U , then d(vi,H

′) increases by m− 1,m,
or m + 1 for each i. If k = n − 1, then starting with d(v1, G

′) =
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d(x,H ′), we find that d(vk,H
′) = d(x,H ′) +ma+ (m− 1)b + (m+

1)c = mn − 2m + h − g + d(x,H ′). If m ≥ 2, this expression is
≥ 2n−4+h− g+d(x,H ′) > n, if n ≥ 7, since h− g ≥ −2. But each
d(vi,H

′) ≤ n. Hence we conclude that if n ≥ 7, there are exactly
two sequences of consecutive vertices of U in p, one starting from x,
and one starting from y.

Let x, v1, v2, . . . , vk be one sequence of consecutive vertices in a
cycle of p, and let y,w1, w2, . . . , wj be the other, where each vi, wi ∈
U and k + j = n − 1. It is convenient to take v0 = x and w0 = y.
Let there be a1, b1, c1 vertices of type (a),(b),(c), respectively, in
v1, v2, . . . , vk, and a2, b2, c2 in w1, w2, . . . , wj .

Lemma 1.3 Let 0 ≤ i ≤ k − 1. Then

d(vi+1,H
′) = d(vi,H

′) +m+G[u1, vi+1]−H[u1, vi+1]

Similarly, if 0 ≤ i ≤ j − 1, then

d(wi+1,H
′) = d(wi,H

′) +m+G[u1, wi+1]−H[u1, wi+1]

Proof. Since p maps H ′ to G′ we have d(vi+1, G
′) = d(vi,H

′). We
also have d(vi+1,H) = d(vi+1, G)+m. But d(vi+1,H

′) = d(vi+1,H)−
H[u1, vi+1] and d(vi+1, G

′) = d(vi+1, G) − G[u1, vi+1]. The result
follows.

It follows that d(vk,H
′) = d(x,H ′)+ma1+(m−1)b1+(m+1)c1.

Similarly d(wj ,H
′) = d(y,H ′)+ma2+(m−1)b2+(m+1)c2. Adding

these gives d(vk,H
′)+d(wj ,H

′) = ma+(m−1)b+(m+1)c+d(x,H ′)+
d(y,H ′), which reduces to mn− 2m+ h− g + d(x,H ′) + d(y,H ′).

Lemma 1.4 If n ≥ 9 then |ε(H) − ε(G)| ≤ 2.

Proof. We have d(vk,H
′), d(wj ,H

′) ≤ n. If m > 2, the above
formula gives mn − 2m + h − g + d(x,H ′) + d(y,H ′) ≤ 2n, or n ≤
2m/(m−2)−{h−g+d(x,H ′)+d(y,H ′)}/(m−2). Since h−g ≥ −2
and m ≥ 3, this gives n ≤ 8, a contradiction.
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At this point we take m = 2 and n ≥ 9. The above formula
becomes

2n− 4 + h− g + d(x,H ′) + d(y,H ′) = d(vk,H
′) + d(wj ,H

′) (∗)

We now abbreviate the notation somewhat, in order to streamline
the proof of the main theorem. We haveH ′ = H−u1 andG′ = G−u1.
Here we have chosen u1 as a vertex in U with the largest degree in
H. Since we will be working mostly with the graphs H and H ′, we
write dx′ = d(x,H ′) and dy′ = d(y,H ′). Similarly for dv′k and dw′

j .
Similarly, we write dx for d(x,H), du1 for d(u1,H), etc. We recall
that h = H[u1, x] + H[u1, y] and g = G[u1, x] + G[u1, y]. We write
u −→ v to indicate that u is adjacent to v.

Theorem 1.5 Let G and H be graphs on n+2 vertices, where n ≥ 9,
such that H − ui ∼= G− ui for i = 1, . . . , n. Then |ε(H)− ε(G)| ≤ 1.

The proof requires only the degrees of the vertices. We assume
that ε(H) = ε(G) + 2 and obtain a contradiction. We use the in-
equality (∗) to limit the values of the parameters dx′, dy′, dv′k, dw

′

j ,
and compare the smallest degrees of H − v1, H − w1, G − v1, and
G− w1.

Case 1. dx′ = dy′ = 0.
This implies that dv′k, dw

′

j ≤ n− 2. It then follows from (∗) that
2n−4+h−g ≤ 2n−4, so that h ≤ g. We observe first that if h = 0,
then H and H ′′ both have at least two vertices of degree 0 (namely
x and y), whereas G′′ has at most one vertex of degree 0 (namely v1
or w1). Therefore H ′′ 6∼= G′′. Hence, we can assume that h ≥ 1.

If h = 1, then H − v1 and H − w1 both have exactly one vertex
of degree 0. Therefore G− v1 and G−w1 must each have one vertex
of degree 0. It follows that u1 6−→ v1, w1 in G. But then G− v2 has
two vertices of degree 0, whereas H − v2 has just one. Hence, we can
assume that h = 2.

We now find that H − v1 and H − w1 both have exactly two
vertices of degree 1. Therefore G − v1 and G − w1 also have ex-
actly two vertices of degree 1. Therefore u1 −→ v1, w1 in G, so that
d(v1, G) = d(w1, G) = 1, and one of v2, w2 has degree 1 in G. Conse-
quently dv1 = dw1 = 3, so that dv′1, dw

′

1 ≥ 2. But this implies that
d(v2, G

′), d(w2, G
′) ≥ 2, a contradiction.
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Case 2. dx′ 6= 0 and dy′ = 0.
This implies that dv′k, dw

′

j ≤ n− 1. It then follows from (∗) that
2n − 4 + h − g + dx′ ≤ 2n − 2. If u1 6−→ y in H, then H − w1 will
have one vertex of degree 0, whereas G−w1 will have no vertices of
degree 0. Hence we must have u1 −→ y in H, so that h ≥ 1.

We next observe that in H−w1, vertex y has degree 1. Therefore
G−w1 must have a vertex of degree 1, which can only be v1. It follows
that u1 6−→ v1 in G, and that 1 = d(v1, G

′) = dx′. Therefore v1 is
adjacent to exactly one vertex z in G′, and in H ′, x is adjacent to
only p−1(z). Then G − z has a vertex of degree 0, but H − z does
not, a contradiction.

Case 3. dx′ = 0 and dy′ 6= 0.
This is identical to Case 2, interchanging x and y, and j and k.

Case 4. dx′ 6= 0 and dy′ 6= 0.
We have dx′, dy′ ≥ 1. Let δ = dx′+dy′−2. Then δ ≥ 0. Without

loss of generality, we take n ≥ dv′k ≥ dw′

j.

4.1 dv′k = n. Then du1 ≥ dvk ≥ n. If u1 −→ vk in H, then
du1 = dvk = n + 1, so that u1 −→ x, y in H, which implies that
h = 2. If If u1 6−→ vk in H, then since du1 ≥ n, we again have
u1 −→ x, y in H and h = 2. By (∗), 2n− 4+2− g+2+ δ = n+ dw′

j,
which reduces to g = n−dw′

j+δ. Now if dw′

j = n, then wj −→ x, y in
H, so that δ ≥ 2, which implies that g = δ = 2. If dw′

j = n− 1, then
wj is adjacent to at least one of x, y in H, so that δ ≥ 1, which gives
g = 2 and δ = 1. If dw′

j = n − 2, this gives g = 2 and δ = 0. So g
always equals 2, and dx′, dy′ are forced. They are either (2, 2), (2, 1)
or (1, 1) according as dw′

j is n, n−1, or n−2. Note that dw′

j 6≤ n−3,
since this would give g ≥ 3.

We now find that the two smallest degrees of H − v1 and H −w1

are dx′ + 1, dy′ + 1. These must also be the smallest degrees of
G − v1 and G − w1. It follows that u1 −→ v1, w1 in G, so that
d(v1, G) = dx′ + 1 and d(w1, G) = dy′ + 1. Therefore dv1 = dx′ + 3
and dw1 = dy′+3, so that dv′1 ≥ dx′+2 and dw′

j ≥ dy′+2. But then
the smallest degrees of G− v1 and G−w1 cannot be dx′ +1, dy′ +1,
a contradiction.

4.2 dv′k = n−1. By (∗), we have 2n−4+h−g+2+ δ = n−1+dw′

j,
which reduces to g = n−1+h+ δ−dw′

j . If u1 6−→ vk, wj in H, then
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since du1 ≥ n − 1, we must have u1 −→ x, y in H, so that h = 2. If
u1 is adjacent to vk but not to wj, then du1 ≥ n, so that we again
have h = 2. Then g = n+ 1 + δ − dw′

j . We must have dw′

j = n− 1,
g = 2, and δ = 0. Therefore dx′ = dy′ = 1.

If u1 is adjacent to wj but not to vk, then h ≥ 1. If u1 −→ vk, wj

in H, then du1 ≥ n and so h ≥ 1. Then g ≥ n+ δ − dw′

j . We either
have dw′

j = n − 1 (which forces h = 2), g = 2, and δ = 0 as in the
previous paragraph, or else dw′

j = n − 2, h = 1, g = 2, and δ = 0.
Therefore dx′ = dy′ = 1.

In the situation when h = 2, we find that H−v1 and H−w1 both
have two vertices of degree 2 as the smallest degrees, namely x and
y. Therefore G−v1 and G−w1 must also have two vertices of degree
two. Hence u1 −→ v1, w1 in G, so that d(v1, G) = d(w1, G) = 2,
from which dv1 = dw1 = 4 and dv′1, dw

′

1 ≥ 3. But then G − v1 and
G− w1 do not have two vertices of degree two, a contradiction.

In the situation when h = 1, H−v1 and H−w1 will have vertices
x and y with degrees 1 and 2. Therefore G − v1 and G − w1 also
have smallest degrees 1 and 2. It follows that u1 6−→ v1, w1 in G.
Therefore dv1 = dw1 = 3, and u1 −→ v1, w1 in H. Then at least one
of H − v1 and H − w1 will have vertices vk, wj with largest degrees
n − 1, n − 2. But since g = 2, the two largest degrees of G− v1 and
G− w1 will both be n− 1, a contradiction.

4.3 dv′k = n−2. By (∗), we have 2n−4+h−g+2+δ ≤ 2n−4, which
gives g ≥ 2 + h + δ, which requires g = 2, h = 0, and δ = 0. But
du1 ≥ n − 2, so that u1 must be adjacent to at least one of vk, wj .
This forces du1 ≥ n, so that h ≥ 1, a contradiction.

This completes the proof of the theorem.
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