
A Fast Algorithm For Finding Hamilton Cycles

by

Andrew Chalaturnyk

A thesis

presented to the University of Manitoba

in partial fulfillment of the

requirements for the degree of

Masters of Science

in

Computer Science

Winnipeg, Manitoba, Canada

Summer 2008

c©Andrew Chalaturnyk 2008

Abstract

This thesis is concerned with an algorithmic study of the Hamilton cycle problem.

Determining if a graph is Hamiltonian is well known to be an NP -Complete problem,

so a single most efficient algorithm is not known. Improvements to the understanding

of any single NP -Complete problem may also be of interest to other NP -Complete

problems.

However, it is an important problem and creating an algorithm which is efficient

for many families of graphs is desirable.

The majority of the work described within starts with an exhaustive backtracking

search, called the Multi-Path method and explores two main areas:

• Creating an algorithm based upon the method which is both efficient in time

and memory when implemented in code.

• Developing a pruning condition based upon separating sets that may be found

during the execution of the method in order to maximize the amount of pruning

possible.

Both of these areas represent a significant evolution of previous work done with

the method. The resulting algorithm is extremely fast and requires only O(n + ε)

space in memory, where n is the number of vertices and ε is the number of edges.

Additionally a class of graphs based on the Meredith graph is described. These

graphs have a property which significantly affects the performance of the multi-path

method. The insights that follow from this property lead to a reduction technique

that further improves the algorithm in a significant way when determining if graphs

ii

Abstract iii

are non-Hamiltonian. Further directions for study along the lines pursued by these

insights is discussed.

Testing of the algorithm is performed on a family of graphs known as knight’s

move graphs, which are known to be difficult for algorithms dealing with Hamilton

cycles.

Contents

Title Page . i
Abstract . ii
Table of Contents . iv

1 Introduction 1

2 Graph Theory Concepts 5
2.1 Basic Terminology . 5
2.2 Graphical Representation . 6
2.3 Paths and Cycles . 6
2.4 Connectivity . 7
2.5 Bipartitions . 8
2.6 Isomorphism . 8

3 The Multi-Path Method 9
3.1 An Exhaustive Search . 10
3.2 Incident Edges about v . 12
3.3 Limiting Edges . 13
3.4 Multi-Path Method . 14
3.5 Simplifying the Search . 18

3.5.1 Reducing G . 18
3.5.2 Removal of Branching Edges 19

4 The Search Space 22
4.1 Example: Petersen Graph . 23

5 Considerations for Algorithm Design 27
5.1 Data Structures . 28

5.1.1 Adjacency Matrix and Lists 28
5.1.2 Degree Values and Virtual Edges 29
5.1.3 Segment and Cycle Storage 29

5.2 Reducing Time and Space Overhead 30

iv

Contents v

5.3 Detecting Stopping Conditions . 31
5.4 Tracking Forced Vertices . 32

6 Designing the Multi-Path Algorithm 34
6.1 Efficient Reduction and Recovery . 35

6.1.1 Extending Segments . 36
6.1.2 Managing Removed Edges . 43
6.1.3 Unwinding Segments and Restoring State 46

6.2 Vertex Selection . 49

7 Navigating the Search Space using a Turing Machine 51
7.1 State of the Tape . 52
7.2 Edges from E(S) . 54
7.3 Status Flags represented by the Bit-Field 54
7.4 Moving Read/Write Head . 55

7.4.1 Moving Right . 55
7.4.2 Moving Left . 55
7.4.3 Switching Directions . 56

8 Implementation of the Multi-Path Algorithm 57
8.1 Data . 57

8.1.1 Graph State . 58
8.1.2 Removed Edges . 58
8.1.3 Tape State . 59

8.2 Code . 59
8.2.1 Running the Turing Machine 59
8.2.2 Extending Segments and Branching 62
8.2.3 Restoring State and Removing Branching Edges 63

9 Pruning Algorithm 64
9.1 Pruning Mechanism . 66
9.2 Testing for Separating Sets . 67

9.2.1 Overview of Previous Test . 67
9.2.2 Increasing ω(Gr −K)− |K| 68

9.3 Reducing the Frequency of Testing 70
9.3.1 Top Down vs. Bottom Up Testing 70
9.3.2 Testing at the Extremities of the Search Space 71
9.3.3 Ensuring a Full Climb up the Search Tree 72

9.4 Implementation . 73
9.4.1 Data Structures . 73
9.4.2 Code . 73

Contents vi

10 Reduction Technique 77
10.1 Hamiltonian Subgraphs . 77

10.1.1 Half-Bipartite Structures . 80
10.1.2 Finding Reducible Complete Half-Bipartite Structures 81

10.2 Reducing G . 82
10.2.1 False positives: an Unwanted Side Effect of Reduction 83

11 Analysis and Verification 85
11.1 Verification . 85
11.2 Analysis . 86

11.2.1 Knight’s Move Graphs . 87
11.2.2 Complete Graphs . 91
11.2.3 Reduction Technique on the Meredith Graph 92

12 Further Work 93
12.1 Multi-Path Algorithm . 93

12.1.1 A Closer Examination of Vertex Order 93
12.1.2 Algorithm for Directed Graphs 94
12.1.3 Fine Tuning for the TSP . 94
12.1.4 A Work Stealing Parallel Implementation 94

12.2 Pruning Algorithm . 95
12.2.1 Constructing Components for Better Separating Sets 95

12.3 Reduction Technique . 95
12.3.1 Finding More Reducible Subgraphs 95
12.3.2 Reconstructing Hamilton Cycles in Gα−1 96

A Multi-Path Code 98
A.1 Data Types . 98
A.2 Extending Segments . 100

A.2.1 Support Routines for Extending Segments 100
A.2.2 Main Routine for Extending Segments 101

A.3 Extending Branches . 106
A.4 Restoring Graph . 112

B Pruning Algorithm 114
B.1 Data Types . 114
B.2 Depth First Search (DFS) . 115

B.2.1 Main DFS algorithm . 115
B.2.2 Routine for calculating Component / Separating Set differences. 121

B.3 Turing Machine for Pruning Condition 123
B.3.1 Pruning . 123
B.3.2 Main Turing Machine Code 124

Chapter 1

Introduction

This thesis describes work that improves and extends upon an algorithm for finding

Hamilton cycles in graphs.

Named for Sir William Rowan Hamilton, the popularity of the problem of finding

Hamilton cycles has one of its roots in the Icosian Game invented by Hamilton. The

object of the game is to find a continuous route along the edges of a dodecahedron

that visit all of its corners exactly once and ends at the starting corner.

A graph can be visualized as a collection of points, or vertices, connected by lines,

or edges. A cycle is route along edges visiting vertices until ending at the originating

vertex. A Hamilton cycle is a cycle that visits every vertex in a graph. The difficulty

of finding Hamilton cycles increases with the number of vertices in a graph. Not all

graphs contain a Hamilton cycle, and those that do are referred to as Hamiltonian

graphs. Determining if a graph is Hamiltonian can take an extremely long time.

In the broad field of Computer Science the problem of determining if a graph is

Hamiltonian is known to be in the class of NP -Complete problems.

1

Chapter 1: Introduction 2

Simply put, the time it takes to solve NP -Complete problems can rise exponen-

tially with the problem size.

Another NP -Complete problem very closely related is the Traveling Salesman

Problem.

The nature of the Hamilton Cycle problem is such that no single most efficient

algorithm is known [Van98]. In [Van98], Vandegriend provides a survey of differ-

ent Hamiltonian algorithms and the problems encountered that can cause extreme

slowdowns during algorithm execution.

Any improvements that can be made to speed up solutions to both determining if

a graph is Hamiltonian and finding Hamiltonian cycles are of interest. Also, because

of the complexity of the problem, improvements may reveal more insight into the

Chapter 1: Introduction 3

qualities of graphs that make them Hamiltonian. Due to the nature of NP -Complete

problems, all problems in the class NP may benefit from improvements or insights

found.

The multi-path method introduced by Rubin [Rub74] and Christofides [Chr75]

is an exhaustive search for all possible Hamilton cycles that can be found within a

graph. The work by Kocay [Koc92], implements the method with an algorithm that

overlays additional pruning capabilities into the search. Under certain conditions the

improvements in [Koc92] can allow for significant pruning of the search tree generated

by the multi-path algorithm.

This thesis extends and improves on the work in [Koc92] with two major improve-

ments and introduces a method for dealing with certain special graphs that can lead

to exponential increases in the performance of the algorithm.

As with the work from [Koc92], the work described here is for finding Hamilton

cycles in undirected simple graphs.

The first of the improvements are to the design and implementation of the al-

gorithm in [Koc92]. These improvements result in reduced runtime and decreased

memory use and are significant code optimizations. The memory reduction is by an

order of magnitude in terms of the number of vertices in the graph. The runtime

improvement is linear with respect to the complexity and size of the graph.

The second of the improvements is to the scope and frequency of the pruning

enhancement from [Koc92].

These improvements are described in depth in chapters 6 through 9.

The new method focuses on a recursive graph reduction technique that can be

Chapter 1: Introduction 4

applied repeatedly to graphs that contain subgraphs with a certain interesting prop-

erty. Chapter 10 describes this reduction technique and shows how it can be used to

sometimes quickly determine if the original graph is not Hamiltonian.

Chapter 2 describes and introduces common Graph theory concepts that are used

throughout this work and chapters ?? through ?? introduce and describe the multi-

path method in detail.

Lastly in chapter 11, these improvements are analyzed and compared against the

original implementation from [Koc92].

Chapter 2

Graph Theory Concepts

2.1 Basic Terminology

A graph G is composed of a set V (G) of vertices and a set E(G) of edges. It

is assumed that n = |V (G)| and ε = |E(G)|. Every edge e ∈ E(G) is composed of a

set e = {u, v} where u, v ∈ V (G). In undirected graphs, edges are unordered pairs

of vertices. In directed graphs, edges or arcs are ordered pairs of vertices. Simple

graphs do not allow edges to repeat and the vertices in an edge must be distinct.

Only simple graphs are considered here.

Edges from E(G) in which v appears are said to be incident to v. The two

vertices incident to an edge are said to be adjacent.

Given the graph G and two vertices u and v from V (G), u→ v means that u and

v are adjacent. u 6→ v indicates that u and v are not adjacent.

5

Chapter 2: Graph Theory Concepts 6

Figure 2.1: Three drawings of the Petersen graph.

2.2 Graphical Representation

As an abstraction, a graph G is represented mathematically as composed of two

sets V (G) and E(G). Visually this can be represented as a collection of points, V (G),

connected by lines, E(G). The co-ordinates of the points or the shape of the lines do

not matter. The same graph G can therefore be represented visually by an infinite

number of drawings. Depending on the drawing, different attributes of a graph may

become more apparent to the observer. For instance the bottom right drawing in

figure 2.1 suggests that there may be a Hamilton cycle in the Petersen graph. While

the Petersen graph is not hamiltonian, by using the same graphical orientation of

fitting adjacent vertices around a circle, it is a useful representation to help in finding

Hamilton cycles in relatively small graphs using simple observation.

2.3 Paths and Cycles

A path in G is defined to be an ordered sequence of distinct vertices such that

every vertex in the sequence is adjacent to the vertex that immediately precedes

it and adjacent to the vertex that immediately follows it. This can be written as

u1 → u2 → ... → uk, where u1 through uk are all distinct vertices from V (G). A

Chapter 2: Graph Theory Concepts 7

cycle in the G is defined as a closed path in G that terminates on the starting vertex.

The number of edges in a cycle is equal to the number of vertices visited.

2.4 Connectivity

Figure 2.2: Example of a graph with a separating set.

If a path exists between two distinct vertices, v, u ∈ V (G), they are called con-

nected. A graph G is connected if every pair of distinct vertices from V (G) is

connected. A component in G is a maximal subgraph of G that is connected. A

graph with more than one component is called disconnected.

In a connected graph G, a separating set is a set of vertices from G that when

removed, disconnects G into two or more components. A separating set, K, with

Chapter 2: Graph Theory Concepts 8

m = |K|, is called minimal when there is no other separating set in G smaller than

m.

A cutpoint in G is a single vertex from G that forms a separating set in G.

2.5 Bipartitions

A bipartition exists in a graph G, if V (G) can be divided into two distinct sets,

A and B, where A ∩ B = ∅ and A ∪ B = V (G), and no two vertices from the same

set are adjacent. A graph with a bipartition is referred to as bipartite.

2.6 Isomorphism

An isomorphism is a one-to-one mapping between vertices of two distinct graphs

that preserves the connections, or edges, between vertices. If an isomorphism exists,

the two graphs are said to be isomorphic. The three drawings of the Petersen graph

in figure 2.1 are isomorphic to each other.

Chapter 3

The Multi-Path Method

This chapter describes the multi-path method for finding Hamilton cycles. While

it was originally proposed by Rubin in [Rub74], the description of the multi-path

method within this chapter is a synthesis of the descriptions from [Koc92, Chr75] as

well as the work described by this thesis.

To facilitate understanding of both the multi-path method and the enhancements

to it some preliminary ground must be covered. Section 3.1 describes a truly ex-

haustive method of finding Hamilton cycles. Sections 3.2 and 3.3 describe two im-

provements that can be used to reduce the amount of search required and section 3.4

combines the results of the improvements to describe the multi-path method. Finally

in section 3.5, a few refinements that appear in [Koc92] are described and added to

the method.

Assume that all graphs G to be considered are non-trivial with respect to the

Hamilton Cycle problem, implying that all vertices in any graph will be at least of

degree three.

9

Chapter 3: The Multi-Path Method 10

The algorithms described in this chapter are partial algorithms used as a tool

to convey general information about the multi-path method. Procedures that are

not fully defined can be implicitly understood given their names and context of use.

Each undefined procedure is assumed to be implementable by some algorithm with a

polynomial overhead in time and space.

3.1 An Exhaustive Search

By definition all vertices from V (G) must be part of any Hamilton cycle. The

edges that make up any Hamilton cycle are what must be varied.

One method to determine if a graph is Hamiltonian is to generate all combinations

of n edges from E(G) until a Hamilton cycle is found or until no combinations are

left. In the worst case, the number of edge combinations to try is
(
ε
n

)
.

The order in which edges are chosen with this method is not restricted by the order

in which they would be traversed in a Hamilton cycle. When testing if the chosen

edges form a Hamilton cycle the correct traversal order will implicitly be found.

Let S be the subgraph of G describing a partial Hamilton cycle formed by choosing

m edges, m < n, to be on the Hamilton cycle. S forms a subgraph in G, with E(S)

and V (S) its edges and vertices. Obviously m = |E(S)|.

When m = n we have a candidate subgraph that will form a cycle iff G is

Hamiltonian.

Algorithm 3.1.1 briefly describes a recursive procedure for generating and testing

all possible combinations of edges up to the first Hamilton cycle found.

The algorithm works by recursively fixing an edge within S and attempting all

Chapter 3: The Multi-Path Method 11

possible edge combinations for the remaining n − m positions to be filled with the

current edges available.

IsCycle verifies if E(S) describes a Hamilton cycle and ChooseEdge returns some

unspecified edge from the remaining edges at the current depth in the search space.

The recursive nature of the procedure allows for the search space of the algorithm

to be modeled as a tree. In this case the depth is bounded by n and the number of

leaves is bounded by
(
ε
n

)
. Each node in the search tree represents this fixed position

in S and the branches represent the current edge in that position.

Algorithm 3.1.1: HCEdges(n, E , S)

comment:

All parameters passed by value.
Initially n = |V (G)|, E = E(G) and S is empty.
result = true ⇐⇒ G is Hamiltonian

if |E(S)| = n then return (IsCycle(S))

while E 6= ∅

do

e← ChooseEdge(E)
E ← E − e
if HCEdges(n, E , S + e) then return (true)

return (false)

This type of algorithm is referred to as a backtracking algorithm. The ability to

return to a specific spot while searching and ensuring that all possible permutations

of decisions are attempted from that point characterize these kind of algorithms.

Chapter 3: The Multi-Path Method 12

3.2 Incident Edges about v

Algorithm 3.1.1 blindly generates edge combinations. If instead the focus is now

placed on vertices, a significant fact emerges. All possible edge combinations about

v ∈ V (G) use one of the deg(v) edges incident to v. There are up to
(
deg(v)

2

)
ways of

selecting pairs of incident edges in any possible cycle about v.

Algorithm 3.2.1 is a modification of algorithm 3.1.1 to instead use vertices chosen

by ChooseVertex, in the selection of edges. These vertices are referred to as anchor

points. Instead of branching out with all remaining edges at the current spot in the

search space, only edges incident to the anchor vertex v are chosen for branches.

Similar to ChooseEdge from the previous algorithm, ChooseVertexEdge returns

some unspecified edge incident to v from the remaining edges at the current depth in

the search space .

Algorithm 3.2.1: HCVertexEdges(n, V , E , S)

comment:

All parameters passed by value.
Initially n = |V (G)|, V = V (G), E = E(G) and S is empty.
result = true ⇐⇒ G is Hamiltonian

if |E(S)| = n then return (IsCycle(S))

v ← ChooseVertex(V)
if v ∈ V (S) then V ← V − v

while deg(E , v) 6= 0

do

eb ← ChooseVertexEdge(v, E)
E ← E − eb
if HCVertexEdges(n, V , E , S + eb) then return (true)

return (false)

Chapter 3: The Multi-Path Method 13

As seen in the algorithm a given vertex may be chosen twice when descending

towards a leaf in the search space. This allows for the
(
deg(v)

2

)
possible edge pairs

about v to be explored iteratively and dramatically reduces the breadth of the search

tree by limiting the total number of leaves while not removing any possible Hamilton

cycle that could be found.

The order and manner in which ChooseVertex picks vertices in V will be discussed

later in section 6.2.

3.3 Limiting Edges

Edge choices from E(G) can be limited based on the edges already chosen. For

any v in a cycle, only two edges incident to v may be used. So deg(v) = 2 with

respect to the subgraph the cycle defines in G.

Definition (segment). A segment is a path in G. Segments do not overlap or share

endpoints with other segments.

Let Si be a subgraph in G defined by some segment and let S = S1 ∪ . . . ∪ Sk be

the k segments formed from E(S). Vex(S) denotes the external vertices, or segment

endpoints, and Vin(S) denotes the internal degree 2 vertices with respect to S.

When adding another edge to S the choice of em+1 ∈ E(G) is now limited to the

edges of E(G − Vin(S)), as no more edges incident to the internal vertices in S can

be chosen and still satisfy the degree 2 restriction.

Inductively it can be seen when m starts at 0 and approaches n, only two edges

incident to a given v ∈ V (G) can ever be in E(S).

Chapter 3: The Multi-Path Method 14

The main idea of the multi-path method is to construct a Hamilton cycle by piecing

together the disjoint segments formed by the edges in S.

3.4 Multi-Path Method

The multi-path method uses the two ideas from sections 3.2 and 3.3 to dramati-

cally reduce the search space of algorithms 3.1.1 and 3.2.1.

The selection of a new edge will eventually cause a chain reaction as each new

v ∈ Vin(S) may induce conditions that require unchosen additions to S.

Let the vertex and edge sets for the derived graph M be:

V (M) = V (G)− Vin(S) (3.1)

E(M) = E ∩ E(G− Vin(S)) (3.2)

Where E is the set of edges remaining in G to be selected for E(S). More on E

will be described later in this section. For now, assume that E has been inherited

from the parent node in the search space.

M represents the remaining choices available to S at the point in the search

space it is defined. Deriving M may result in one or more vertices in V (M) that no

longer have any choice in what edges are placed into E(S), leading to the following

definitions:

Definition (forced vertex). A forced vertex is a vertex v ∈ V (M) where deg(v) = 2

when v 6∈ V (S) or deg(v) = 1 when v ∈ Vex(S).

Definition (forced edge). An forced edge is an edge e ∈ E(M) where v ∈ e and v is

a forced vertex.

Chapter 3: The Multi-Path Method 15

Forced vertices must be added to Vin(S). These additions are accomplished by

adding forced edges one at a time to E(S).

The chain reaction occurs when the two vertices incident to a forced edge both

belong to Vex(S). In this situation either a cycle is found or two segments are forced

to merge. The two endpoints representing the junction point of two segments now

belong to Vin(S). Any edges not in E(S) that are incident to the junction vertices

will be removed in M and may result in one or more additional forced vertices.

Definition (consistent). M is said to be consistent if for all v ∈ M , deg(v) > 1

when v ∈ Vex(S) and deg(v) > 2 when v 6∈ Vex(S).

The chain reaction continues until M stabilizes and is found to be consistent or

until a stop condition occurs. A consistent M implies a stable search space.

A stop condition can occur in three situations:

Stop Condition (1A). ∃v ∈ Vex(S) and deg(M, v) = 0

Stop Condition (1B). ∃v 6∈ Vex(S) and deg(M, v) = 1

Stop Condition (2). For some segment Si ∈ S there exists a forced edge, e ∈ E(M),

such that the addition of e to Si would form a cycle. In this case if m = n a Hamilton

cycle has been found. If m < n no Hamilton cycle can exist in the current S.

After each change to S a stop condition may occur in M . Algorithm 3.4.1 describes

Chapter 3: The Multi-Path Method 16

this process of forcing edges into S and testing for a stop condition.

Algorithm 3.4.1: ForceEdges(G, V , E , S)

comment:

All parameters passed by value.
Returns the set { V , E , S, stop } where stop is a
boolean flag indicating a stop condition.

EM ← E(G− Vin(S)) ∩ E
VM ← V (G)− Vin(S)

while not IsConsistent(Vex(S), EM)

do

S ← S + GetForcedEdge(Vex(S), EM)
EM ← E(G− Vin(S)) ∩ E
VM ← V (G)− Vin(S)
if IsStopCondition(S, EM) then return ({ ∅, ∅, ∅, true })

V ← V ∩ VM
E ← EM

return ({ V , E , S, false })

Now that the process of forcing edges into S has been described, the rest of the

method follows the same design as algorithm 3.2.1.

Using the first improvement from section 3.2, an anchor point v is chosen from

V (M) and a single edge, eb, incident to v is selected from E(M) and added to E(S).

This edge is referred to as a branching edge, and is a reflection of one of the two

locations in the search space where choice is allowed in the algorithm. The other

being the selection of anchor points. The overall shape and size of the search space

is controlled by these choices.

After removing eb, M may no longer be consistent and have edges to be forced into

S, ultimately reducing the number of anchor points and branching edges to choose

Chapter 3: The Multi-Path Method 17

from. Algorithm 3.4.2 describes the multi-path method using the ideas given so far.

As previously mentioned and used in the previous algorithms, E represents the

edges remaining in G that can be chosen for S. Edges are removed from E in two

ways. The first is by the G−Vin(S) reduction. The second is by removal of branching

edges, eb, that have had all possible combinations of E(S) attempted for the current

location in the search space. Once a branching edge has been used, no more cycles

can be found that contain that edge when continuing to search at the current depth

in the search tree.

Algorithm 3.4.2: HCMultiPath(G, V , E , S)

comment:

All parameters passed by value.
Initially V = V (G), E = E(G) and S is empty.
result = true ⇐⇒ G is Hamiltonian

{ V , E , S, stop } ← ForceEdges(G, V , E , S)
if stop then return (|V (G)| = |E(S)|)

v ← ChooseVertex(V)

while deg(E , v) 6= 0

do

eb ← ChooseVertexEdge(v, E)
E ← E − eb
if HCMultiPath(G, V , E , S + eb) then return (true)

return (false)

As can be seen from the use of the stop conditions, no IsCycle test is required

with the multi-path method. If the algorithm ever allows E(S) to contain n edges, a

Hamilton cycle will be found. Taken together, both of the improvements reduce the

total breadth and average depth of the search space. This is one of the major benefits

Chapter 3: The Multi-Path Method 18

of the multi-math method.

3.5 Simplifying the Search

A couple of minor improvements to the multi-path method are now described that

focus on simplifying movement through the search space. Both of these improvements

are used by [Koc92]. Section 3.5.1 introduces a reduction that can be applied to G

in order to direct the path through the search space more efficiently. Section 3.5.2

removes redundant recursive calls to the multi-path method at a given node in the

search space.

Algorithms 3.5.1 and 3.5.2 reflect these improvements, and are the basis for the

multi-path algorithm developed and presented later on in this work.

3.5.1 Reducing G

At any given node in the search space there is the original graph G, the set S

of segments derived from the m edges selected so far and the derived graph M as

described by equations 3.1 and 3.2.

A reduced graph GSE defined by M and S may be defined for any point in the

search space.

GSE = M + Ev(S) (3.3)

Ev(S) is a set of virtual edges created to connect the segment endpoints in M .

Each virtual edge represents a single segment from S at the current point in the

Chapter 3: The Multi-Path Method 19

search space. Edges from M may be referred to as real edges.

Due to equation 3.3 some of the conditions that define forced vertices, consistency

and stop conditions can be simplified:

Definition (forced vertex). A vertex v ∈ V (GSE) where deg(v) = 2.

Definition (consistent). GSE is said to be consistent if for all v ∈ V (GSE), deg(v) > 2.

Stop Condition (1). ∃v ∈ V (GSE) such that deg(v) = 1.

In algorithms 3.5.1 and 3.5.2, the variable G represents the reduced graph GSE .

Ensuring a Simple Graph

A consequence of introducing the virtual edges from Ev(S) in the forming of GSE

is the potential for a virtual and a real edge to share the same endpoints. In this

situation GSE would not represent a simple graph. With respect to G, the segment

that the virtual edge represents and the real edge would form a cycle. As long as this

cycle does not contain all vertices, it is safe to remove the real edge.

In fact its removal would reduce the size of the tree formed below the current

point in the search space.

In algorithm 3.5.1 it is to be assumed that ReduceGraph would ensure that a

simple graph is returned, and any virtual edge takes precedence over a real edge.

3.5.2 Removal of Branching Edges

As seen in algorithm 3.4.2, once a branching edge, eb, has been attempted, it is

removed for the remaining branches at the current level in the search space. Since

Chapter 3: The Multi-Path Method 20

all edge combinations that may exist at that point in the search space which contain

that branching edge will have been attempted, it must be removed. This removal

may cause an inconsistent GSE .

In this case the multi-path method as currently defined, will fail at the first call

to ForceEdges for each recursive call to the multi-path method on the remaining

branches. It would instead be better to detect if GSE is inconsistent once the recursive

call to the multi-path method returns for that branching edge. In algorithm 3.5.2, the

addition of a call to ForceEdges from within the while loop reflects this improvement.

Algorithm 3.5.1: ForceEdges(G, S)

comment:

All parameters passed by value.
Returns the set { G, S, stop } where stop is a
boolean flag indicating a stop condition.

G ← ReduceGraph(G, S)
if IsStopCondition(G, S) then return ({ ∅, ∅, true })

while not IsConsistent(G)

do

S ← S + GetForcedEdge(G)
G ← ReduceGraph(G, S)
if IsStopCondition(G, S) then return ({ ∅, ∅, true })

return ({ G, S, false })

Chapter 3: The Multi-Path Method 21

Algorithm 3.5.2: MultiPath(n, G, S)

comment:

All parameters passed by value.
Initially G = G, and S is empty.
result = true ⇐⇒ G is Hamiltonian

{ G, S, stop } ← ForceEdges(G, S)
if stop then return (n = |E(S)|)

v ← ChooseVertex(V (G))

while deg(v) 6= 0

do

eb ← ChooseVertexEdge(v, E(G))
G ← G − eb
if MultiPath(n, G, S + eb) then return (true)
{ G, S, stop } ← ForceEdges(G, S)
if stop then return (n = |E(S)|)

return (false)

Chapter 4

The Search Space

To provide context on where the improvements described in this thesis are focused,

this chapter illustrates the search space of the multi-path method.

The search trees used to describe the search space are assumed to be traversed

in a depth first, left to right manner and are a reflection of the route generated by

algorithm 3.5.2.

A hypothetical example of a search tree is presented in figure 4.1. The larger cir-

cular nodes represent the anchor points chosen and the smaller solid points represent

vertices removed from G and placed into Vin(S). The small diamond shaped leaves

of the search tree represent the occurrence of a stopping condition.

Anchor points that exist close to the extremities of the search tree are referred to

as leaf nodes. A leaf node is an anchor point in the tree that only contains leaves as

descendants.

The edges joining points in the search tree do not correspond to edges added

to E(S). The dashed edges between points in the tree do however indicate that a

22

Chapter 4: The Search Space 23

branching edge was chosen at that point in the search space.

The rightmost solid edge descending out of an anchor point in the search tree

represents an inconsistent state occurring due to the removal of a branching edge

from G.

4.1 Example: Petersen Graph

The search tree for the non-hamiltonian Petersen graph is shown in this example.

This graph is used as an example because it terminates after only finding six stopping

conditions.

Figure 4.2 represents the search tree for the Petersen graph. The labeled vertices

on the drawing of the Petersen graph correspond to the labels on the search tree. In

the case of the Petersen graph, each of the six leaves terminate with stop condition 1

being encountered.

Table 4.1 describes the state of E(S) at each of the six leaves in the search tree

moving from left to right. Note how the branching edges correspond to the anchor

points from the tree, and how E(S) behaves like a stack when moving between the

branching edges.

In figure 4.3 the state of G is represented for each stable state after the branching

edge has been added to E(S) for each branching edge down to the leftmost leaf. Note

stop condition 1 is detected for vertex 4 after branching edge {2,3} has been added.

Also note that virtual edge {8,9}, requires the removal of the corresponding real edge,

leading to the addition of vertex 7 to Vin(S).

As a comparison to the first method presented for finding Hamilton cycles, this

Chapter 4: The Search Space 24

Table 4.1: E(S) at the leaves of search tree for the Petersen graph. Branching edges
are bold.

Edge # 1 2 3 4 5 6

1 {1,3} {1,3} {1,3} {1,3} {1,7} {1,7}
2 {1,7} {1,7} {1,10} {1,10} {1,10} {1,10}
3 {9,10} {9,10} {7,8} {7,8} {2,3} {2,3}
4 {6,10} {6,10} {4,7} {4,7} {3,5} {3,5}
5 {2,3} {3,5} {2,3} {3,5} {2,4} {2,9}
6 {5,6} {2,4} {5,6} {2,4} {8,9} {4,7}
7 {5,8} {2,9} {5,8} {2,9} {9,10} {4,6}
8 {7,8} {5,6} {2,4} {9,10} {4,7} {5,6}

example of the multi-path method only generates 6 leaves, using only 5 points where

a branching is directly controlled by the algorithm. The first method would have

generated
(
15
10

)
, or 3003 leaves, and many more branchings would have to be controlled

directly by the algorithm.

Chapter 4: The Search Space 25

Figure 4.1: Hypothetical search tree generated during the search for Hamilton cycles
for some unknown graph using the Multi-Path method. Typically the tree generated
would be extremely large and would not be practical to display.

Chapter 4: The Search Space 26

1

1

10

2

3

6

5

8

3

2

9

6

7

2

3

5

8

4

3

4

2

9

3

2

9

10

7

7
4

6

1

107 3

2

9

4

5

6

8

1 1

1

2
2

7 5 2 10

4

5

Figure 4.2: Full search tree of the multi-path method for the Petersen graph.

1

107 3

2

9

4

5

6

8
7 3

2

9

4

5

6

8

2

9

4

8

Figure 4.3: State of G after each branching edge down to the leftmost leaf.

Chapter 5

Considerations for Algorithm

Design

Before progressing further with the design of the multi-path algorithm, some con-

siderations with respect to data structures and implementation details for [Koc92]

must first be mentioned.

The implementation for [Koc92] is similar to what has already been introduced

for the multi-path method in algorithms 3.5.2 and 3.5.1. It is a recursive procedure

that can be configured to either stop at the first Hamilton cycle found, or to visit

each possible Hamilton cycle by examining the entire search space.

If a Hamilton cycle is treated as a stopping condition for a branch instead of a

stopping condition for the algorithm, this visiting operation is possible in the multi-

path method.

27

Chapter 5: Considerations for Algorithm Design 28

5.1 Data Structures

If each vertex is labeled with a positive integer value, it can be used both as an

identifier and as an index in lookup tables, arrays and other data structures. The

special identifier of ‘0’ is reserved, and can have specific meaning depending on use.

Typically this use will result in the 0th entry from any table/array to be used

either as a temporary store or go unused. Entries in a table/array structure that

use the 0 value in an entry where a vertex identifier is expected typically mean the

indexed value does not belong to a set tracked by the structure.

5.1.1 Adjacency Matrix and Lists

Two ways to store the edges of a graph are by using either a matrix, refered to as

an adjacency matrix, or a linked list construct, called an adjacency list.

An adjacency matrix is an n x n data structure that uses the index of two vertices

to determine the existence of an edge. An adjacency matrix however has two main

drawbacks: it is slow to determine all of the edges incident to a given vertex and it

takes O(n2) of memory to store.

A linked list has the drawback of not being able to quickly test if two vertices

are adjacent. The adjacency list for a given vertex must be scanned until the other

vertex is encountered.

The benefit of an adjacency list is when the traversal of all edges of a given vertex

is all that is required. Additionally with adjacency lists, the entire graph is stored in

O(ε) space.

In [Koc92] both of these structures are used, however as will be shown in later

Chapter 5: Considerations for Algorithm Design 29

chapters, there is need only for the adjacency lists.

5.1.2 Degree Values and Virtual Edges

Storing the current degree value in a lookup table/array is extremely useful, as it

avoids the overhead of recalculating them. Depending on the data structure used to

represent edges, the time overhead of recalculating is at least O(deg(v)). A lookup

table reduces this to O(1). The tradeoff here is that more memory is required to store

the degree value of each vertex.

One very useful aspect of maintaining the degree array, is that it becomes trivial

to test if a vertex is still within the current G, as it must have a non-zero value in the

array.

With respect to the multi-path method, the extra virtual edge that may exist for

any vertex can be stored using an array of vertices. At any point in the search space,

the state of Ev(S) can be reflected by an array with either a ‘0’ value for vertices not

in S or a vertex value for the other end point of a virtual edge.

As will be seen later, this way of representing the virtual edge is preferable to

inserting a new edge into an adjacency list.

5.1.3 Segment and Cycle Storage

One result of the work done in this thesis, is that it is unnecessary to store the

current segments and partial cycles during the running of the algorithm. Instead

only directly maintaining the stack of edges in E(S) is necessary, as both segment

and cycles can be directly derived from the contents of E(S).

Chapter 5: Considerations for Algorithm Design 30

However, in [Koc92] maintaining them is an integral part of the algorithm. To

this effect a single array of vertices is used for segments and two arrays of vertices are

used to track the current partial and potential Hamilton cycle.

For the segments, a merge-find like structure is maintained in the array. More on

the merge-find structure can be found in [Wei95].

For the partial Hamilton cycle, the two arrays use the entries to point to the

vertices to the left and to the right of a given vertex.

5.2 Reducing Time and Space Overhead

As noted in the header comments for each of the previous algorithms described,

procedure arguments are passed by value.

The overhead required to pass variables by value increases the memory require-

ments by an order of magnitude. Additionally, passing by value implies that time

must be spent copying data. The expected overhead of copying would be in the range

of O(n+ ε) per branching edge in the search space.

To limit the time and space penalties of copying by value, [Koc92] uses an in-

place reduction on G. This means that a reference to the attributes in G is available

at all points during the running of the algorithm and the original state of G is not

known until the algorithm finishes. Only the current reduction of G is known and is

equivalent to that given by equation 3.3. This in-place reduction is referred to as Gr.

To accomplish this in-place reduction, there must be a way to reverse changes to

Gr at each point in the search space, so as to ensure that the state of the data for

each function call is equivalent to that of the pass by value model. The method used

Chapter 5: Considerations for Algorithm Design 31

to restore Gr for the work described in this thesis can be found in the next chapter

and differs from the way it is done in [Koc92].

One of these differences is in the extent of removing the pass by value data. While

limiting the expense of retaining a complete copy of the graph state per node, in

[Koc92] there is still a memory overhead of O(n2) consisting of degree information and

segment information. This is the remaining data that is still passed by value during

branching operations, with O(n) cost in time and space for each node. Without the

in-place reduction, memory overhead would be O(n3) in space.

This remaining overhead is eliminated by the work described in this thesis and

the entire state of the algorithm only requires O(n+ ε) in space to function.

5.3 Detecting Stopping Conditions

The detection of a stopping condition has very little overhead. The algorithm

forces edges into E(S) one at a time, and a stopping condition can be detected while

dealing with each edge. Assume the current forced edge is e.

The second stopping condition is easy to detect by simply checking segment mem-

bership of each of the two vertices incident to e. If both vertices belong to the same

segment, a cycle is forced and a stop flag is raised. This can be done with an time

overhead of just O(1).

The first stopping condition has slightly more overhead than the second. A forced

vertex never has any more edges to remove from Gr, but the other vertex v incident

to e may already be an endpoint for another segment. In this case, v must be added

to Vin(S) and all remaining edges incident to v must be removed from Gr. The other

Chapter 5: Considerations for Algorithm Design 32

vertices incident to each of these removed edges must have their degree values reduced

by one. If the degree value for any of these vertices is reduced to one, a stopping

condition has occurred. The overhead here is just O(deg(v)), per non forced vertex

pushed into Vin(S).

5.4 Tracking Forced Vertices

Instead of scanning each vertex in Gr for forced vertices each time the ForceEdges

method is called, it is possible to record the current forced edges in a list for quick

referencing later.

As mentioned with detecting stopping conditions, changes to S all occur one edge

at a time. When removing the edges incident to each new vertex in Vin(S), the

changes to the degree values for the other vertex can also be used to detect when

a vertex has become forced. Each of these vertices can be added to a list for later

processing. The list construct used in [Koc92] is a queue. In the implementation for

the multi-path algorithm for this thesis a stack is used instead. A stack was chosen

because by marking the beginning of the stack with a 0 value and not using it, no

length variable is needed. A pointer to the current position is all that is required

when a stack is used in this way.

As the order in which forced edges is unimportant with respect to the final consis-

tent Gr, any abstract data type for managing list addition and removal can be used

here.

The order in which forced vertices are removed from the list becomes important

when trying to detect stopping conditions sooner and more sophisticated structures

Chapter 5: Considerations for Algorithm Design 33

could be used to enable this, however this is beyond the scope of the work done here

and further work could yield some interesting results.

Chapter 6

Designing the Multi-Path

Algorithm

Algorithms 3.5.1 and 3.5.2 used to describe the multi-path method are enough to

provide a broad recipe on how to go about creating a complete multi-path algorithm.

This chapter is focused on fully developing the key aspects of the algorithm with

respect to efficiently managing Gr and S, as well as the selection of anchor points.

The implementation of the multi-path algorithm resulting from the work described

in this thesis was developed incrementally, as a series of refinements and data structure

changes, each of which brought an increase in efficiency and speed. By studying the

effects of each of the changes on various graphs, the techniques were continually

improved, and new approaches suggested themselves. This chapter and the next

represents the finalization of the work in this thesis on the stand alone portion of the

multi-path algorithm.

Recall that Gr was introduced in the previous chapter as a representation of G

34

Chapter 6: Designing the Multi-Path Algorithm 35

from algorithm 3.5.1, with the difference being that it is the continuously changing

instance of the original graph G that is not passed by value during the execution of

the multi-path algorithm.

As mentioned in the last chapter, passing by value increases both time and space

overhead to the algorithm that would be best left avoided if possible. In order to

design an algorithm that completely removes the pass by value requirements of move-

ment between consistent states of Gr, the first section of this chapter is concerned

with the mechanics of changes to S and Gr during movement up and down the search

space of the multi-path algorithm. This also includes an improved algorithm for

creating and extending the segments in S over the one used in [Koc92].

The final section of this chapter deals with the order in which anchor points are

chosen. This can have a profound effect on the shape and size of the search space to

be navigated by the algorithm.

6.1 Efficient Reduction and Recovery

The reduction and recovery of Gr between branching edges in the search space

consumes the majority of the time spent running the algorithm. The improvements

described in this section attempt to reduce the internal changes that are required

when transforming a graph from one state to another, while additionally removing

the remaining pass by value requirements from [Koc92].

By changing how edges are added to S it is possible to reverse the changes to

Gr as well as restore the data structures storing segment and degree information,

subsequently reducing the memory footprint required by this portion of the algorithm

Chapter 6: Designing the Multi-Path Algorithm 36

by a factor of n. This results in a memory footprint ofO(n+ε) for the entire algorithm.

Additionally the total time overhead of managing Gr is reduced to O(∆S), where

∆S is the number of edges added to E(S) between branching edges. This is instead

of the O(n+ ∆S) from the previous version.

Section 6.1.1 describes a different way of creating and extending segments in S that

improves on what has been used previously. The improvement here over [Koc92] is

difficult to quantify as it is heavily dependent on the structure of the graphs searched,

however at worst it will be equivalent in steps required.

Section ?? describe the way removed edges from Gr are managed, and section ??

describes how the state of Gr is restored. The process of restoring Gr used here is

the reason for the O(∆S) claim.

6.1.1 Extending Segments

Up to this point changes to segments in S occur one edge at a time. In this way

there are three possible results when adding a forced or branching edge to E(S); either

a segment is created or extended, or two segments will be merged into a single segment.

Each time E(S), Ev(S) and Gr must be updated to reflect the new reduction. The

process is repeated until no more forced edges remain in Gr.

Extending Segments from Forced Vertices via Paths

The new approach changes focus from single edges to paths that can be extended

from forced vertices in Gr. Extending segments using a branching edge and its corre-

sponding anchor point is a special case of this approach and is described at the end of

Chapter 6: Designing the Multi-Path Algorithm 37

eSi

Gr

u veSi−1 eSi+1

Pu Pv

v′

Figure 6.1: Segments Si−1, Si, and Si+1 before extension of S∗i via forced vertex
v. Forced vertices are represented by the solid symbols. The virtual edge {u,v}
representing Si is labeled with a eSi and the other virtual edges are labeled likewise.

this section.

Let v be the next forced vertex to be processed. If v is the endpoint of some

segment, Si ∈ S, virtual edge {u,v} represents this segment.

Let Pv be the first path to be extended into Gr that originates at v. The first

edge in Pv is the real edge, {v,v′}. This edge is added to E(S).

Let Pu be the second path to be extended into Gr that originates at v, but proceeds

in the opposite direction. If v is the endpoint of a segment, let the first edge in Pu be

the virtual edge {u,v}. If v is not the endpoint of a segment, let the first edge in Pu

be the real edge {u,v}, and ensure it is added to E(S). Initially let u′ = u.

During the growth of Pv and Pu, the shared endpoint v remains fixed, while v′

and u′ are updated to indicate the new endpoints. Figure 6.1 illustrates this initial

configuration on a cross section of an example Gr.

The goal is to form a new segment, S∗i , represented by the following:

S∗i = Pu + Pv (6.1)

Chapter 6: Designing the Multi-Path Algorithm 38

Path Growth

PvPu

eSi

Gr

1

2

7

3

45

6

u vu′ v′
eSi+1eSi−1 8

Figure 6.2: Example of extension of paths Pu and Pv from forced vertex v. The
numbers represent the order in which the associated edges have been added to the
paths during the extension. For real edges, the relative ordering represents the order
in which they were added to E(S).

Definition (locally consistent). A segment Sk ∈ S is locally consistent if for all

w ∈ Vex(Sk), deg(Gr, w) > 2.

Initially focus is centered on the growth of Pv. The value of v′ and the edges that

make up Pv change under the following two conditions:

1. v′ collides with another segment. The corresponding segment is absorbed by

the growing path and v′ changes to the other endpoint of that segment.

2. v′ is a forced vertex. Let e be the other edge incident to v′. e must be added to

the path as well as E(S). v′ changes to the other endpoint of e.

Once Pv can longer be extended, focus switches to the growth of Pu with the same

two conditions for growth applied to endpoint u′.

If an edge from Ev(S) is to be added to a path due to condition 1, the segment it

represents is now absorbed by the new segment, S∗i . This is instead of the merging

Chapter 6: Designing the Multi-Path Algorithm 39

metaphor. At the endpoint where a collision has occurred, all non-path real edges

in E(Gr) which are incident to that endpoint must be removed. This is illustrated

in figure 6.2, just after edges 1 and 5 are processed. Section 6.1.2 will describe how

these edges are to be removed from Gr.

The removal of non-segment edges may cause the first stopping condition to occur

or induce new forced vertices.

If one of the current u′ or v′ become a forced vertex due to a segment collision, the

growth of the other path must resume after growth stops for the current path. This

can repeatedly occur at multiple points during the growth of both paths causing the

focus of growth to alternate between Pu and Pv repeatedly.

Figure 6.2 illustrates this when edges 1 and 5 have been added and the subsequent

non-segment edges have been removed. After edge 1 is added, u′ becomes forced,

allowing Pu to grow. During the growth of Pu, once edge 7 has been added, focus

must switch back to Pv in order to add edge 8.

Path growth stops once Gr becomes locally consistent with respect to u′ and v′.

At this point it is important to ensure that the new segment represented by a virtual

edge {u′,v′} would not turn Gr into a multi-graph.

In order to ensure that no real edge {u′,v′} exists in Gr, the adjacency list of

one of u′ or v′ must be scanned for the other potential endpoint. The adjacency list

for the vertex with the lower degree value is chosen. If an edge is found, it must

be completely removed as per section 6.1.2. The removal of that edge may cause a

locally inconsistent Gr at one or both u′ and v′ and the paths must continue to grow

as before.

Chapter 6: Designing the Multi-Path Algorithm 40

Once a locally consistent Gr is reached and is ensured to be a simple graph, the

new segment S∗i can now be defined and a virtual edge can be created in Ev(S).

Figure 6.3 illustrates the new virtual edge that represents S∗i .

Gr

v′u′ eS∗
i

Figure 6.3: S∗i after extension of Si. Segments Si−1 and Si+1 have been absorbed
during the extension of segment Si from the previous figure 6.2.

The process of extending segments is repeated for the next forced vertex remaining

in Gr until no more forced vertices remain and a consistent Gr is reached, or until a

stopping condition is encountered.

Stopping Conditions

PvPu

12 34 u vu′ v′

Gr

w

5

Figure 6.4: Example of stopping condition 1. The removal of non-path edges when
extending a segment from v eventually causes vertex w to be reduced to a degree of
1.

Chapter 6: Designing the Multi-Path Algorithm 41

As briefly mentioned earlier and as illustrated in figure 6.4, the first stopping

condition is encountered while removing edges.

The detection of the second and most important stopping condition is simplified

quite nicely here. If during a path extension the two paths are forced to collide, or

u′ = v′, a cycle will have been found. Figure 6.5 illustrates this condition when edge

9 is traversed.

PvPu

Gr

127 3456 u vu′ v′8

9

Figure 6.5: Example of stopping condition 2. Attempting to extend Pv with edge 9
leads to u′ = v′.

Extending Segments from Anchor Points

When an anchor point, v, is selected during the descent down the search space, a

branching edge is chosen incident to v. In this and the previous work, the branching

edge is the first one encountered in the adjacency list for v. Let the branching edge,

eb, be the edge {v,v′}.

In order to use the method of extending segments, there are two cases in regards

to v that must be considered.

The first case is that no segment is currently incident to v. In this case Pu will

initially be empty and u′ = v. Pv and v′ are initialized using eb and eb is then added

Chapter 6: Designing the Multi-Path Algorithm 42

to E(S). The growth of Pv, if required, can now start as described for forced vertices.

If during the growth of Pv, v becomes forced, then as previously described, the focus

of growth will alternate to Pu once Pv stops growing.

The second case is when v is already a segment endpoint. In this case, all of the

real edges but eb that are incident to v are removed from Gr. This removal converts

v into a vertex of degree 2 and it can be treated the same as a forced vertex. Pv and

Pu can now be initialized as such, with v being the first vertex to be considered so as

to ensure that eb is in the correct position within E(S).

Improvements over Previous Work

Three key aspects are improved on by this approach to creating and extending

segments over what was done previously.

The first is that forced vertices can be processed when they are encountered by

the path endpoints rather then through the previous approach of dealing with a

single forced vertex at a time. This requires a constant change in focus which creates

many redundant segments, that otherwise would be avoided using the new method.

The redundant segment creation is the second aspect that is improved upon, as less

redundant segments will be created.

The redundant segments cannot be completely avoided with this method because

the extension of one segment may still cause a chain reaction that impacts another

segment created during the same inconsistent state of Gr.

The third aspect is the avoidance of using an adjacency matrix for detecting if

the new virtual edge {u′,v′} would create a multi-graph. This is what allows for the

Chapter 6: Designing the Multi-Path Algorithm 43

O(n+ ε) total space overhead for the algorithm.

The time saving of not managing an adjacency matrix to reflect the current state

of Gr though-out the entire search space seems to offset the expense of scanning the

adjacency list. More analysis could be done to prove this point.

6.1.2 Managing Removed Edges

There are two ways edges can be removed from Gr during the execution of the

algorithm.

The first is a partial removal that takes advantage of the fact that one endpoint of

the edge will have been removed from Gr and placed in Vin(S). This is what occurs

when non-segment edges are removed due to a segment collision.

The second is a complete removal of an edge which occurs when both endpoints

of the edge remain in Gr. This is what occurs with the endpoints of branching edges

and with the endpoints of real edges that have been superseded by virtual edges.

Partially Removing Edges from Gr

Let w be the endpoint that is the target of a segment collision. The vertex w must

be added to Vin(S) and each of the non-segment real edges incident to w must be

removed. Since Gr is where the active searching occurs during the multi-path method,

the removed edges only have to appear missing from Gr. From the perspective of

Vin(S), each of the real edges incident to w can remain attached.

To accomplish this partial removal of an edge, G is treated as if it were a directed

graph from the perspective of the vertices in Vin(S) and as an undirected graph from

Chapter 6: Designing the Multi-Path Algorithm 44

the perspective of Gr. When using adjacency lists to represent the edges in a graph,

this ability to switch perspectives between directed and undirected graphs comes

naturally, as each vertex in the graph must have its own adjacency list.

Recall that Gr is the continuously modified instance of G for the current location

in the search space. When the undirected G is initially defined in memory by the

data structures representing it, each edge is actually represented by two arcs. This is

one arc pointing out of the adjacency list for each of the two vertices incident to it.

For each non-segment real edge, ew, incident to w, only the other endpoint of ew

needs to have its corresponding arc removed from its adjacency list. The only time

a segment edge must be partially removed is when the other vertex which is incident

to that the edge is to be the new endpoint of the fully extended segment. This is

because the other vertex incident to the segment edge must remain in Gr.

The elegance of this approach of removing only one arc is that half of the work

of removing, and subsequently restoring, an edge is required and the adjacency list

of w contains a complete record of what edges were incident to it at the time it was

removed from Gr. This is extremely useful for the recovery of Gr during ascent up

the search space. More on this is discussed in section 6.1.3.

Figure 6.6 is an illustration of the results of using this method of partially removing

edges from Gr, for some segment, Si ∈ S. Note how the edges in E(S) that are not

incident to a segment endpoint do not even have to be removed from Gr using this

approach.

Chapter 6: Designing the Multi-Path Algorithm 45

eSi

Gr

Vin(Si)

Vin(S − Si)

Figure 6.6: Example of the partial removal of edges from Gr. Focus is provided for
some segment, Si ∈ S. The thicker lines represent edges in E(Si). Arcs shown in
the diagram represent the remaining arcs for the detached vertices of G contained by
Vin(S).

Completely Removing Edges from Gr

Unfortunately only detaching the inactive portion of the graph does not work with

branching edges and real edges that have been superseded by virtual edges. A way

to manage completely removed edges must be determined.

In [Koc92] all edges to be removed are completely removed from G and stored in a

list of removed edges. There is a list of removed edges associated with each consistent

state of Gr up the search tree.

During ascent up the search space, once the state returns to the branching edge of

an anchor point, the removed edges contained by the list for that consistent state are

restored and the branching edge is removed and stored in the list of edges previous to

the current one. The latest branching edge will be restored once the current anchor

point has been exhausted and the state returns to the consistent state one level above

Chapter 6: Designing the Multi-Path Algorithm 46

the current one.

In essence this is a stack of lists, that are removed and added in the same manner

that branching edges in E(S) are. In [Koc92] this stack of lists is implicitly maintained

by the recursive nature of the algorithm.

This same method of managing removed edges is used in the same manner here

for the fully removed edges. However the stack of lists must be directly managed by

the algorithm, as will be made more apparent by the next chapter.

6.1.3 Unwinding Segments and Restoring State

Now that extending segments and managing the removed edges from Gr have been

discussed, a way to restore Gr to a previous state must be introduced. In order to

restore Gr without relying on any pass by value data, the adjacency lists, virtual edge

array and degree array must have some way to be systematically restored.

Restoring the Adjacency Lists and the Degree Array for Gr

Let GP
r represent the consistent state of Gr that is to be restored and is some point

above the current one in the search space. This corresponds to the closest branching

edge when treating E(S) like a stack.

By restoring the edges to Gr in the reverse order in which they were removed

from Gr, and by restoring any partially removed edges associated with the incident

vertices of each edge, Gr can be incrementally restored towards GP
r . More on how the

edges can be processed in this reversed order will be provided in the next chapter.

Let e ={u,v} be the latest segment edge added to E(S). Without loss of generality,

Chapter 6: Designing the Multi-Path Algorithm 47

assume that u was removed from Gr and added to Vin(S). All of the arcs but the arc

with target v, listed in the adjacency list for u point to vertices still in Gr that have

had the corresponding edge for that arc partially removed.

Generally at the time of restoring e, only one of u or v will have partially removed

edges to be restored. The exception to this is for branching edges that join two

segments together.

Restoring the degree array to the correct state is trivial. The initial degree value

of any removed vertex must be 2. This is due to the vertex being part of the potential

Hamilton cycle in Vin(S).

For each arc a from the adjacency lists of u or v that represents a partially removed

edge, the corresponding opposite pointing arc is a′. The target vertex of a must have

a′ restored to its adjacency list. During this restoration the target vertices of both a

and a′ must have their degree entries incremented by one each.

Additionally if a vertex from e represents a segment endpoint, the endpoint still

in Gr must have an arc restored to its adjacency list with no corresponding change

to the degree entries. Knowledge about e with respect whether or not it is contains

a segment endpoint is explained in the next chapter.

Each e from S is processed in this way up to the first branching edge encountered

in E(S).

Once this branching edge is reached, the list of completely removed edges associ-

ated with that level in the search space can be restored to the adjacency lists along

with the degree values of V (Gr) for the endpoints of those edges. Since the edges

here are represented by two arcs that are to be restored, the target vertex of each arc

Chapter 6: Designing the Multi-Path Algorithm 48

is used to increment the corresponding entry in the degree array by 1 each.

Restoring the Virtual Edges Array

The virtual edge array is slightly trickier. Let EV be the virtual edges array

for Gr, where the entries in the array correctly represent Ev(S) for all vertices not

in Vin(S) for the current location in the search space. The remaining entries in EV

reflect the prior states of Ev(S) in the levels above the current one in the search space.

By taking advantage of the fact that segments are now ‘unwound’ in the reverse

order in which they are created, the older entries in EV that represent vertices in

Vin(S) can be used to restore EV to the correct previous state of Ev(S) before the

segments were created or extended.

Let w′, z′ be the endpoints of a new virtual edge representing a segment S∗i that

is about to created by the path extension algorithm from section 6.1.1. Let w be the

vertex that is the origin of the the two paths that were grown to find the segment.

If w was not originally a segment endpoint then EV [w′] and EV [z′] prior to the

new segments creation, were equal to zero. After the segment is finalized, EV [w′] = z′

and EV [z′] = w′. When restoring Ev(S) to its previous state all that needs to be

done is setting both EV [w′] and EV [z′] back to zero.

If w was a segment endpoint. Let this segment, Si, be represented by virtual edge

{w,z}.

If w′ 6= w and z′ 6= z, both w and z will both have been added to Vin(S).

Additionally the entries for w and z in EV will not be changed, as two new entries

are to be made for w′ and z′. In this case when reversing changes to Gr, all that

Chapter 6: Designing the Multi-Path Algorithm 49

needs to be done is setting the entries EV [w′] and EV [z′] to zero. Endpoints w and

z will already reflect the correct values in EV for segment Si.

Without loss of generality, let w′ 6= w and z′ = z. In this case only w will be

added to Vin(S) and the entry EV [z] will be updated to point to w′, leaving the entry

EV [w] its previous value of z. When reversing changes to Gr for segment Si, this

unchanged entry EV [w] is used to restore the value of EV [z] and EV [w′] will be set

to zero. More explicitly EV [EV [w]] = w and EV [z′] = 0 when restoring the old

virtual edge.

Now that EV is explained in terms of restoring previous states of Ev(S) a way to

know when to use which form of restoring EV needs to be found.

Let e ∈ E(S) be the segment edge about to be restored as per the order explained

in section 7.2. If information about how that edge was removed from Gr is maintained,

a decision can be made on what endpoint of e needs to have its value in EV restored

and in what way. Section 7.3 will provide details on how and what information is

stored for each e ∈ E(S).

If it is found that a vertex x ∈ e is a segment endpoint when e ∈ E(S), the

restoration of e to Gr will remove that status and x will no longer be on a segment.

In this case EV [x] is set to zero. Otherwise EV [EV [x]] = x is used for all other cases,

even when EV [x] is zero, as the 0th entry goes unused by Gr.

6.2 Vertex Selection

Selecting the next anchor point at each point in the search space where Gr is con-

sistent has been modified from that used in [Koc92]. Previously after each consistent

Chapter 6: Designing the Multi-Path Algorithm 50

state resulting from the selection of a branching edge, a vertex with the largest degree

in Gr was chosen as the next anchor point. This can be done with an O(n) time scan

of the vertices in Gr.

The new algorithm has been modified to only select new anchor points once the

last anchor point has been added to Vin(S). This is accomplished by branching edges

off of the last anchor point until it is removed from Gr. With respect to the search

tree this appears as the same anchor point appearing up to two times in a row during

the descent towards a leaf. In this way a static list of vertices can be provided to

control the order of anchor point selection.

As will be seen in the analysis done in chapter ??, by instead providing a presorted

list of vertices in descending order with respect to degree, smaller search trees are

generated, subsequently reducing the time to exhaustively search the entire space.

By default the implementation uses this ordering.

Other presorted lists are possible as well and can sometimes yield better results

than what the default provides. For example in chapter ??, analysis of the results

for the knight’s graph ‘k7x4’ show a remarkable speedup when using a presorted list

based on an ascending degree sequence.

Finding new heuristics for vertex selection based on this static list has a lot of

room for new discoveries and suggestions for further study is mentioned in chapter

??.

Chapter 7

Navigating the Search Space using

a Turing Machine

As briefly mentioned in section 4.1 and emphasized in figure 7.1, the behavior of

changes to E(S) between branching edges is that of a stack. This is to be expected

due to the recursive nature of the algorithm. A drawback of using recursion is that

making the algorithm re-enterable is difficult.

It would be nice to remove the direct recursion and be able to leave and enter

the algorithm at any point in the search space. This has applications from easier

check-pointing of code that can run for long periods of time, with the full exploration

of the search space one Hamilton cycle at a time, and with performance gains due to

having no recursive calls of the algorithm.

This chapter describes a way of modeling the navigation of the search space using

a Turing Machine to describe the movement up and down the search tree.

51

Chapter 7: Navigating the Search Space using a Turing Machine 52

Leaf#
1 2 3 4 5 6

|E(S)|

0
1

4

8

10
0

{2, 3} {2, 3} {2, 4}

{1, 7}
{1, 3}

Figure 7.1: Changes to E(S) from leaf to leaf based on the search tree for the Petersen
graph. The state of Gr always returns to that of the latest branching edge added to
E(S).

7.1 State of the Tape

00101 00101 0010100101

Terminate Machine Hamilton Cycle

R/W Head

0010100101 00101 00101 00101001010010100101 11100 1110011100 11100 11100 11100

Figure 7.2: Tape for the Multi-Path Turing Machine.

A proper Turing Machine consists of a set of tapes and a read/write head for each

tape. Each tape can have an infinite number of positions, called cells, to the left and

right of each read/write head. The Turing machine described here uses one tape and

Chapter 7: Navigating the Search Space using a Turing Machine 53

one read/write head. The tape is only n+ 2 cells in length.

There are two entries per cell on the tape, one of which is an arc representing an

edge from E(S) and the other a bit-field representing a finite number of states.

The Turing Machine used here, models the recursive nature of the algorithm by

tracking the the current state of E(S) within its cells and the current position in the

search space by the location of the read/write head. The movement of the read/write

head to the right tracks the descent into the search space while movement to the left

tracks ascent. The bit-fields stored in the cells contain information on how to restore

each cell’s edge to the graph during ascent.

The two cells on the endpoints of the tape do not have edges set and only have a

single bit permanently set in their bit-fields. A illustration of the tape for this Turing

Machine can be found in figure 7.2.

On the leftmost cell of the tape, a termination bit is set. If the read/write head

ever makes it to this cell and reads this termination bit, the entire search space will

have been exhausted.

On the rightmost cell of the tape, a Hamilton cycle bit is set. If the read/write

head reads this bit, a Hamilton Cycle will have been found.

The edges found in the cells between the endpoints are all of the edges in E(S)

that make up the Hamilton cycle.

If the read/write head is not at either endpoint, the current state of E(S) is re-

flected by the edges found in the cells from the left most endpoint up to and including

the current cell pointed to by the read/write head.

The starting point of the Turing machine is the left most cell on the tape and is

Chapter 7: Navigating the Search Space using a Turing Machine 54

the only time the machine can be in that position without terminating.

7.2 Edges from E(S)

The arcs stored in each cell that represent the edges from E(S) come from the

adjacency list of the path endpoint u′ or v′ of the growing segment in S at the time

the edge was added to S. With the exception of the case when a branching edge is

added to S as a stand alone segment, each of these arcs always point to a forced

vertex added to Vin(S) at the time the edge was added to E(S). Additionally if a

segment collision occurred when adding an edge the source vertex of the arc stored

will be the point of collision. In this way when moving to the left, each vertex and

any partially removed edges can be restored in the reverse order in which they were

removed from Gr.

7.3 Status Flags represented by the Bit-Field

The following meanings are represented by the flags stored by the bit-field entries:

• Terminate Machine

• Hamilton Cycle

• Target of arc is a segment endpoint.

• Target of arc has edges to be restored (non-segment edges have been removed).

• Arc represents a branching edge, and the target of the arc is an anchor point.

• Arc represents a branching edge, and the source of the arc is an anchor point.

• The anchor point is on a segment.

Chapter 7: Navigating the Search Space using a Turing Machine 55

More flags exist for the pruning operations that will be introduced and discussed

in later chapters and are not yet required.

7.4 Moving Read/Write Head

7.4.1 Moving Right

Moving the read/write head to the right implies descent down the search space .

The status and edge information is never read while moving to the right, only written.

Control of the movement of the head to the right is controlled by the selection of

branching edges off of anchor points, and the forced edges due to an inconsistent Gr.

Movement to the right stops when one of the two stopping conditions is encoun-

tered.

Typically movement to the right involves selecting an anchor point, choosing a

branching edge off that point, forcing any edges from an inconsistent Gr into E(S)

and then if necessary choosing another branching edge off the same anchor point.

This is repeated until a stopping condition occurs.

7.4.2 Moving Left

Moving the read/write head to the left implies ascent up the search tree and

recovery of Gr to a previous state. In this case the read/write head only reads the

tape one cell at a time, restoring the state of Gr based on the instructions in the

status flags set in the bit field and the edge provided. Movement to the left stops if

the Termination flag is encountered or the closest branching edge is encountered.

Chapter 7: Navigating the Search Space using a Turing Machine 56

7.4.3 Switching Directions

If a branching edge is encountered during movement to the left, all remaining

edges that have been removed and associated with that branching edge are restored

and the branching edge is then removed. Movement can now begin to the right. At

this point if Gr is no longer consistent after the removal of the branching edge, forced

edges are placed onto the tape until the graph is consistent. This process of changing

directions from left to right is referred to as rotating the anchor point.

Chapter 8

Implementation of the Multi-Path

Algorithm

The ideas from the previous chapters can now be put together and expressed as a

complete algorithm. To accomplish this, source code from the implementation of the

algorithm is provided within this chapter and in the later appendices. The language

used is the ‘c’ programming language.

The only code missing are the routines for loading graphs, and those for allocating,

initializing and freeing data structures.

8.1 Data

All of the data types used are found in Appendix A.1. The HCStateRef type

references a state structure storing the current state of the search space. This includes

the attributes of Gr, the removed edges and the tape of the Turing Machine. Let s

57

Chapter 8: Implementation of the Multi-Path Algorithm 58

be the current instance for some graph G.

8.1.1 Graph State

The current graph state is maintained via three variables in s. These are an array

of adjacency lists s→adjList, a degree array s→degree and a virtual edges array

s→virtualEdge. Each of these arrays are of length n+1, so that they can be indexed

by the n vertices from V (G).

An adjacency list is defined by type VArc. It is a doubly linked list of structures

representing arcs in G. Each list, a, is null terminated in the forward direction (via

a→next) and circularly linked in the backwards direction (via a→prev). There is

also a target vertex (via a→target) and a cross reference to the opposite pointing arc

(via a→cross).

When adding arcs to an adjacency list, the arc being added is always inserted to

the top of the list.

8.1.2 Removed Edges

The removed edges from Gr are maintained by a stack of adjacency lists. Each

null terminated list contains arcs from different vertices. Since removal of arcs from

each list occurs all at once, there is no need to maintain the circular back reference,

‘prev’. When restoring each arc to its corresponding adjacency list, the cross reference,

‘cross’, is used to determine the correct source vertex.

A pointer to the correct adjacency list in the stack is maintained by the algorithm

in the following way:

Chapter 8: Implementation of the Multi-Path Algorithm 59

1. The pointer is moved upwards after restoring the completely removed edges it

points to. The branching edge that was just exhausted for that point in the

search space is then fully removed from Gr and placed into the list the pointer

now references.

2. The pointer is moved downwards just before branching starts for some edge.

This list the pointer now references will contain all arcs from any fully removed

real edges from Gr up to the next anchor point in the search space.

8.1.3 Tape State

The structure storing the tape for the Turing machine is an array of type HCTape.

The origin of the tape is stored in s→origin and the current position of the read/write

head is stored in s→ pos. Each entry of the tape contains an arc of type VArc

representing an edge in E(S) and a bit-field containing the status information.

8.2 Code

The majority of the code for the implementation of the multi-path algorithm can

be found in Appendix A. The source code that is listed here is sufficient to describe

the overall use and structure of the program.

8.2.1 Running the Turing Machine

The source code in listing 8.1 contains the implementation of runTuringMachine.

This top level procedure controls the overall movement of the read/write head while

Chapter 8: Implementation of the Multi-Path Algorithm 60

navigating the search space.

Before first starting the Turing Machine, the tape must be initialized or primed.

This simply means that the entries in the tape must be set to that of the first decent

down the search space up to the first leaf, or stopping condition. The actual machine

always starts at a leaf in the search.

The reasoning for starting at a leaf is that if a Hamilton cycle is found, the machine

will stop at a leaf with the read/write head ready to move to the left. If exploring

the entire search space is required, it is then easy to just re-enter the machine.

The function primeTape initializes the tape to the first leaf in the search space.

The function returns true only when runTurningMachine can be entered. A false

result is because either the first leaf represents a Hamilton cycle or a simple non-

hamiltonian decision is detected such as a vertex with degree lower than 2. The source

code in listing 8.2 describes the use of runTuringMachine in finding and counting

Hamilton cycles.

Chapter 8: Implementation of the Multi-Path Algorithm 61

Listing 8.1: The main Turing Machine method.

/∗ Run Tur ing Machine u n t i l a Hami l ton c y c l e i s found or s e a r c h space i s

exhaus t ed . Ensure tha t tape i s pr imed f i r s t b e f o r e c a l l i n g . Retu rns f a l s e

when s e a r c h space exhaus t ed . ∗/

bool
runTuringMachine (HCStateRef s)
{

HCTape ∗hx ; /∗ r ead / w r i t e head f o r tape ∗/
Vertex ∗d2 , x ;

VArc ∗∗L = s−>ad jL i s t ;
Vertex ∗e = s−>v i r tua lEdge ;
UInt ∗d = s−>degree ;
Vertex ∗nv = s−>vertexOrder ; /∗ nv [x] r e f e r s to nex t v e r t e x i n l i s t ∗/

s−>f l a g s . i sHami ltonCycle = f a l s e ;

/∗ tape head must be at a l e a f i n s e a r c h space , move tape head l e f t to the

c l o s e s t b r anch i ng edge ∗/

hx = unwindSearchEdge (L , e , d , s−>pos) ;

whi le (! (hx−>s t a tu s & HC TERMINATE)) {

/∗ remove the exhaus t ed b ranch i ng edge and sw i t ch d i r e c t i o n s ∗/
x = rotateAnchorPoint (s , L , e , d , hx , &d2) ;

/∗ remova l o f b r anch i ng edge may have c r e a t e d an i n c o n s i s t e n t s t a t e ∗/
x = ensureCons i s t ent (s , L , e , d , d2 , x , nv) ;

i f (x) {
/∗ keep e x t end i ng b ranch i ng edges from anchor p o i n t s ∗/
whi le (extendAnchor (s , L , e , d , x)) {

do x = nv [x] ; whi le (! d [x]) ;
}

}

/∗ s t opp i ng c o n d i t i o n encounte r ed (a l e a f) , s top movement to the r i g h t ∗/
i f (s−>f l a g s . i sHami ltonCycle) return t rue ;
hx = unwindSearchEdge (L , e , d , s−>pos) ;

}

s−>pos = hx ;
return f a l s e ;

} /∗ runTur ingMach ine ∗/

Chapter 8: Implementation of the Multi-Path Algorithm 62

Listing 8.2: Examples of using the Turing Machine to count Hamilton cycles.
/∗ Find the next hami l t on c y c l e i n the s e a r c h space f o r the graph r e f e r e n c e d

i n s . Retu rns f a l s e when no Hami l ton c y c l e found . ∗/

bool
nextHamiltonCycle (HCStateRef s) {

return runTuringMachine (s) ;
} /∗ nex tHami l t onCyc l e ∗/

/∗ Find the f i r s t Hami l ton c y c l e i n the s e a r c h space . Retu rns f a l s e when no

Hami l ton c y c l e found . ∗/

bool
f i r s tHami l t onCyc l e (HCStateRef s)
{

resetStateAndRestoreGraph (s) ;

i f (primeTape (s) && ! runTuringMachine (s)) return f a l s e ;

s−>f l a g s . i sHami l ton ian = s−>f l a g s . i sHami ltonCycle ;
return s−>f l a g s . i sHami ltonCycle ;

} /∗ f i r s t H am i l t o nC y c l e ∗/

/∗ Count a l l Hami l ton c y c l e s i n s e a r c h space f o r graph r e f e r e n c e d i n s . ∗/

ULongLong
hamiltonCycles (HCStateRef s)
{

ULongLong c = 0 ;

i f (f i r s tHami l t onCyc l e (s))
do {

c++;
} whi le (nextHamiltonCycle (s)) ;

return c ;
} /∗ ham i l t o nCy c l e s ∗/

8.2.2 Extending Segments and Branching

Segment extension can occur in two points in runTuringMachine. Both methods

ensureConsistent and extendAnchor, found in Appendix A.3, call extendSegments,

Chapter 8: Implementation of the Multi-Path Algorithm 63

found in Appendix A.2.2.

The complete implementation of the algorithm for segment extension discussed in

section 6.1.1 is contained within extendSegments.

The first method in runTuringMachine that can call extendSegments is ensure-

Consistent. Just as its name would suggest, ensureConsistent ensures that the current

state of Gr is consistent after the removal of a branching edge.

The second method appearing in runTuringMachine that calls extendSegments is

extendAnchor. This procedure ensures that the anchor point, ‘x’, has been removed

from Gr by extending up to two branching edges off of it.

8.2.3 Restoring State and Removing Branching Edges

The restoration of Gr when ascending the search space is controlled by unwind-

SearchEdge, found in Appendix A.4. This method starts at the location in the search

space where a stopping condition has just occurred and ‘unwinds’ the changes to Gr

one edge/arc at a time from the tape using the procedure unrollArc, also found in

Appendix A.4. Once the closest branching edge, or the end of the tape has reached,

unwindSearchEdge returns that location to runTuringMachine for use by rotateAn-

chorPoint and ensureConsistent.

The procedure rotateAnchorPoint, found in Appendix A.3, removes this branching

edge from Gr and if necessary populates the stack of forced degree 2 vertices ‘d2’ to be

later processed by extendSegments when ensuring that the graph state is consistent.

Chapter 9

Pruning Algorithm

In any backtracking algorithm, if conditions exist that allow for entire branches

of the search tree to be avoided with out affecting the outcome of the search, these

conditions are referred to as pruning conditions.

The pruning conditions used in [Koc92] center around a powerful lemma about

Hamiltonian graphs. This lemma appears in Bondy and Murty [BM76].

Definition. The number of connected components in the graph G is ω(G).

Lemma 1. Let K be a separating set of the graph G. If ω(G)− |K| > 0 then G is

not hamiltonian.

Searching for the existence of separating sets with this property is difficult as it

would involve enumerating over the power set for V (G) in some way. However, if one

could be found with this property for some GSE while searching for a Hamilton cycle

it may be possible to determine how far back in the search space the property holds

and continue searching from that position onwards. The ability to prune back the

search space given a separating set that satisfies lemma 1 is described in section 9.1.

64

Chapter 9: Pruning Algorithm 65

Having a way to prune back the search space using separating sets is useless

without first having a nice way to find them. Certain conditions exist that allow for

relatively quick linear detection of separating sets. Both cut points and bipartitions

can be detected in this way. Cut points automatically satisfy lemma 1, as each cut

point taken individually results in two or more components. In a bipartite graph, if

the two sets differ in length, the smaller of the sets can be chosen as a separating set

that satisfies lemma 1.

In [Koc92] a modified version of an algorithm by Hopcroft and Tarjan for finding

cut points is used. It is a depth first traversal of the vertices in Gr that includes

bipartition testing in addition to finding cut-points.

The approach used for pruning the search space has been improved upon in two

ways in this thesis. First the scope of detecting cut points has been increased over

the implementation for [Koc92]. The changes to the scope allow for the results from

the bipartition condition to be compared against the results using cut points. By

choosing the set that would return the largest difference that satisfies lemma 1 more

pruning may be possible from that point in the search space.

For the second improvement, the point in the search space where detection of

separating sets occurs has been changed. This change ultimately reduces the overhead

of detecting separating sets without missing any pruning opportunities that would be

found using the method described in [Koc92]. Section 9.3 describe this improvement.

Chapter 9: Pruning Algorithm 66

9.1 Pruning Mechanism

As already stated the pruning condition provided by lemma 1 can be used to avoid

searching entire branches of the search space. This section describes the mechanism

used to prune back the search space once a separating set has been found for some

Gr in the space.

Let Gk+1
r be a reference to some consistent Gr in the search space for G. Assume

that the point Gk+1
r has a detectable separating set K, with c = ω(Gk+1

r −K)− |K|.

Let c > 0, then lemma 1 is satisfied and Gk+1
r is not hamiltonian.

No more search is possible at Gk+1
r and movement up the search tree towards the

closest anchor point must begin. Let K ′ be a new separating set formed from all of

the vertices from K and select vertices from Vin(S) as they are returned to Gr during

the movement up the search tree. Recall from the previous work in this thesis, that

vertices are returned to Gr in the reverse order in which they were removed.

Let v the next vertex to be restored to Gr on the way up the search space. v is

added to K ′ so that no change could have occurred to the result of ω(Gk+1
r − K).

After v is restored to Gr, v can be added to K ′ if ω(Gk+1
r −K) = ω(Gr − (K ′ + v)).

In this way the value of c will only decrease by 1 if v is added to K ′.

Determining whether or not to add v to K ′ so that the number of components

remain unchanging is difficult to do optimally. However a heuristic proven in [Koc92]

can be applied based on the knowledge of how each v was removed from Gr.

Essentially v can be added to K ′ when the addition of v back into Gr does not

involve any non-segment edges. Typically these are the forced vertices that led to-

wards Gk+1
r . When v such as these are reattached to Gr only a virtual edge will have

Chapter 9: Pruning Algorithm 67

been pulled back a bit and no changes to connectivity will have occurred. Special

care must be taken for any v that represent past anchor points on the path up the

root of the search tree. Vertices that were once anchor points must be added to K ′

as they would involve the return of one or more branching edges.

This process of generating larger K ′ for each v reattached to Gr continues until

c has been reduced to 0. Gk
r is the position of the closest anchor point at or above

this point. Search for a Hamilton cycle must recommence at Gk
r . Figure 9.1 is an

illustration of some hypothetical search space this process is applied to.

9.2 Testing for Separating Sets

9.2.1 Overview of Previous Test

As can be seen from the way the pruning condition climbs up the search space

towards Gk
r , the largest possible value for c is desirable. Additionally as stated in the

beginning of the chapter, the actual testing for a separating set must be reasonable

in its overhead.

To satisfy the latter, [Koc92] uses an O(n+ ε) algorithm based on one developed

by Hopcroft and Tarjan. If Gr is connected at the time of testing the algorithm

produces a value for c in one of two ways.

The first is if a cut point is detected. In this case the value of c is set to be the

number of components surrounding a single cut point reduced by one, as that is the

length of the separating set. The choice of the single cut point is that of the lowest

cut point in the first branch to contain a cut point in the depth first search.

Chapter 9: Pruning Algorithm 68

The second way c is found in a connected Gr is if no cut point is found. In this case

the entire graph will have been visited by the depth first search and a determination

on whether or not Gr is bipartite can be made. In this case if a bipartition is found,

c is set to the absolute value of the difference of the two sets found.

If Gr is disconnected, the depth first search is repeatedly called until all vertices

in Gr have been visited. In this case c is set to the number of components visited.

This is equal to the number of times the depth first search had to be called before all

vertices were visited.

Afterwords if c > 0 the multi-path algorithm can stop for Gr and pruning can

take place.

9.2.2 Increasing ω(Gr −K)− |K|

If no separating set is found by the depth first search then the worst case perfor-

mance will have occurred in running the test. Typically this will be the case for the

vast majority of the times testing occurs.

Since pruning is the ultimate goal of the test, the algorithm for testing has been

modified to always run in the worst case, but with the benefit of having a larger value

of c for the pruning to take advantage of.

This larger c is obtained in the following ways:

1. All cut points are found in Gr and the subsequent components are calculated

during the traversal of the graph by the depth first search.

2. The bipartition condition test is always able to run to completion if Gr is con-

nected.

Chapter 9: Pruning Algorithm 69

3. If disconnected, a running total for c is calculated for all components in Gr.

Each value of c due to cut points found as in the first way contribute to the

total.

If the first two cases occur, the largest value for c is chosen. The third case

overrides all of the other cases as it would always be greater than case one, and the

bipartition condition can not exist in a disconnected graph.

Please note that during the writing of this work, a way of using these disconnected

components as they relate to bipartition was realized. This result is now discussed but

not reflected in the code provided or in the analysis.

As in the third way of arriving at a value of c, if a bipartition was found in the

disconnected component of Gr, its difference can then be used towards comparing

against any cut points for the best separating set to use. If the difference is zero for

the bipartition found, a value of 1 can still be used as the choice of simply using the

single disconnected component still can be used.

Ensuring a proper count for the separating set size

The depth first search is always called on a consistent Gr. However it may ad-

ditionally be called after a branching edge has been attempted. The subsequent

removal of the branching edge may have a subtle impact on the size of the separating

set found by the pruning condition test. If the anchor point attached to that branch-

ing edge was not absorbed into Vin(S) after the removal of the branching edge, it

must be considered part of the separating set for Gk
r . This is taken into account by

the implementation when returning the value of c for the pruning operation.

Chapter 9: Pruning Algorithm 70

9.3 Reducing the Frequency of Testing

9.3.1 Top Down vs. Bottom Up Testing

The algorithm from [Koc92] uses the top down approach to testing for separating

sets. What this means is that just before each anchor point is explored and branching

occurs, the test is run against the current consistent Gr for that anchor point.

By only having the tests occur on the extremities of the search space, significant

speedups in terms of the time spent testing can be achieved.

In order to only run the test at the extremities of the search space, it must be

shown that no opportunities to prune the search space are missed with respect to the

top down approach.

Overlapping Components for Gk+1
r and Gk+2

r

Lower instances of Gr in the search space have at least as many components due

to cut points as their predecessors, and those components that do exist, overlap.

Assume Gk+1
r is the point in the search space where a pruning opportunity would

first be detected in the top down approach. Let Gk+2
r be an instance of Gr closer to

the bottom of the search space that descends from Gk+1
r .

As mentioned before in section 9.1, Ek+1 ⊇ Ek+2. Also any virtual edge only

replaces existing connectivity in the graph. Subsequently any cut point in Gk+1
r will

either still exist in Gk+2
r , or be removed. If the cut point was removed, then more

disconnected components will be detected in Gk+2
r .

Additionally no additional connectivity in the graph can be introduced between

Chapter 9: Pruning Algorithm 71

Gk+1
r to Gk+2

r .

By this reasoning only more components could be created from Gk+1
r to Gk+2

r .

Bipartitions in Gk+1
r and Gk+2

r

With similar reasoning with respect to E , any bipartition that would be detected

in Gk+1
r will also appear in Gk+2

r if no disconnection occurs in Gr before then.

Additionally due to the reduced edge count in Gk+2
r , the chance of finding a

bipartition is greater and the search becomes faster. This is also the case for cut

points as well.

9.3.2 Testing at the Extremities of the Search Space

The extremities of the search space for the purposes of this thesis is defined to be

the locations of the leaf nodes in the search space. Recall that in chapter 4 leaf nodes

were defined to be anchor points that only have leaves descending from them in the

search tree.

The following strategy for when to run the test has been adopted by the imple-

mentation for this thesis: The test for a separating set is run on the next consistent

state found for Gr after a leaf node has been detected.

Determining where leaf nodes are in the search space is accomplished in the fol-

lowing way:

1. On the start of the Turning Machine a marker called ‘low’, that points to a cell

on the tape is set to point to the leftmost cell on the tape.

Chapter 9: Pruning Algorithm 72

2. If the Turing machine has been moving to the right and encounters a stopping

condition, movement commences to the left and stops at a branching edge, this

represents an anchor point in the search tree.

If the ‘low’ marker points at a cell to the left of the read/write head, it is

updated to point to the current position of the read/write head. This represents

the lowest anchor point in the tree so far.

If the ’low’ marker points to the current position of the read/write head it means

that the same anchor point previously marked is still the lowest point found so

far.

If the ‘low’ marker points to a position to the right of the read/write head, it

means that a leaf node has been reached, exhaustively searched and control is

currently at the anchor point directly above where the leaf node was detected.

A pruning flag can now be set.

3. If the pruning flag is set, when the next consistent state is reached the test for

a separating set can be run, and the ’low’ marker can be reset to the leftmost

position of the tape.

Figure 9.2 demonstrates this with GA
r being the point where a leaf node in the

search has been detected. Gk+2
r is the next consistent state after GA

r .

9.3.3 Ensuring a Full Climb up the Search Tree

Because the pruning mechanism is not optimal for a value of c, each position found

up the search space by the pruning mechanism must be tested again when using the

Chapter 9: Pruning Algorithm 73

bottom up approach.

To do this, the pruning flag is not reset after pruning has taken place, so on the

next consistent state, the test for a separating set is repeated and further climbing

can continue. It is not until the test for a separating set comes back with no sets

found that the flag can be turned off.

9.4 Implementation

The ‘c’ source code that implements all of the pruning functionality discussed in

this chapter is fully included in Appendix B.

9.4.1 Data Structures

The data structures required to run the depth first search is listed and documented

in appendix B.1. A reference to the state information required to run the DFS code

is stored by the HCStateRef instance.

9.4.2 Code

A modified version of the runTuringMachine method called, runTuringMachineWith-

Pruning is listed in appendix B.3.2.

Two extra methods along with the variables to control finding the leaf nodes in

the search space have been introduced to runTuringMachineWithPruning.

The first method introduced is getCompDiff, found in appendix B.2.2. This

method returns true if a separating set was found and returns the difference via

Chapter 9: Pruning Algorithm 74

the variable c.

The second method introduced is pruneSearchSpace, based upon the pruning

mechanism presented in section 9.1, given the current cell position on the tape and

the argument c, unrolls the search state to the closest branching edge at or above

where c becomes zero. This method is found in appendix B.3.1.

The actual search for a separating set is performed by dfsCutBipart, found in

appendix B.2.1, and is used solely by getCompDiff.

Chapter 9: Pruning Algorithm 75

Gk+1
r

Gk
r

Figure 9.1: Hypothetical search space with pruning opportunity. Consistent graphs
Gk
r and Gk+1

r are labeled. The smaller points between them represent the vertices
that may make up the new separating set K ′. In this example a separating set has
been discovered at Gk+1

r that allows pruning up to Gk
r .

Chapter 9: Pruning Algorithm 76

Gk−1
r

Gk
r

GA
r

Gk+2
r

Gk+1
r

Figure 9.2: Hypothetical search space with pruning opportunity. A leaf node has
been detected at GA

r . A test for a separating set will occur at Gk+2
r and allow pruning

all the way up to Gk−1
r .

Chapter 10

Reduction Technique

The previous work described in this thesis focused on general improvements to the

multi-path algorithm that can benefit search with all graphs types. In this chapter a

family of graphs is introduced that severely impact the performance of the multi-path

method, despite the improvements already made.

A reduction technique is presented in this chapter that can be used to determine

if a graph from this family is not Hamiltonian in an extremely short period of time.

Further work is needed to use the technique in determining if a graph from this family

is Hamiltonian and is discussed in chapter 12.

10.1 Hamiltonian Subgraphs

Definition (external vertex). Let A be some subgraph of the graph G. A vertex

v ∈ V (A) is said to be an external vertex of A if there exists an edge {u,v}∈ E(G)

such that u ∈ V (G− A).

77

Chapter 10: Reduction Technique 78

Figure 10.1: The Meredith graph. The multi-path algorithm is severely impacted in
performance while searching this graph. This impact is mostly due to the properties
of the marked subgraphs.

Definition (reducible subgraph). Let R be a subgraph from graph G. R is called a

reducible subgraph if for any Hamilton cycle or path from G, a Hamilton path, P ∈ R,

must exist between some external vertices from R, and P must be fully contained

within the Hamilton cycle or path found in G.

If a graph has a reducible subgraph, then it belongs to this family of graphs that

can dramatically slow down the multi-path algorithm.

From the perspective of the rest of the graph when searching for Hamilton cycles,

a reducible subgraph must be entered, fully traversed, and then exited, much like a

Chapter 10: Reduction Technique 79

single vertex is.

In figure 10.1 a representative of this family of graphs is shown. This graph,

named the Meredith graph, contains ten reducible subgraphs that severely impact

the performance of the multi-path algorithm.

The reason for the dramatic effect on performance is that the multi-path algorithm

does not know about reducible subgraphs nor does it attempt to find a Hamilton path

in one first before searching the rest of a graph. Instead multiple segments can be

formed going into and out the external vertices of the individual reducible subgraphs.

This can occur at many points in the search space. The state of Gr at each of these

points needs to be exhaustively searched which represents an exponential period of

time spent fruitless searching for a Hamilton cycle.

The subgraphs found in the Meredith graph are a special case of reducible sub-

graphs. Called complete half-bipartite subgraphs, section 10.1.1 details the specific

reasons on why certain half-bipartite subgraphs are reducible. Section 10.1.2 briefly

describes a fairly simple method of finding complete half-bipartite reducible subgraphs

in a graph such as the Meredith graph.

Finally in section 10.2 a process of recursively using collections of disjoint reducible

subgraphs to arrive at much a smaller reduced graph is described. These reduced

graphs can then be used to determine if a graph from this family of reducible graphs

is not Hamiltonian is a very short period of time.

Chapter 10: Reduction Technique 80

10.1.1 Half-Bipartite Structures

Definition (half-bipartite subgraph). Let B be some subgraph of graph G. P is the

maximal subset of the internal vertices of B such that no two vertices from P share

an edge. If |P | > 1 then B forms a half-bipartite subgraph in G.

Lemma 2. Let P be the subset of internal vertices from a half-bipartite subgraph

B ∈ G, with p = |P | and q = |V (B) − P |. If p ≥ q then no Hamilton cycle can be

found in G.

Proof. Let x be the number of vertices from P visited by a path through B that

starts and ends outside of P . Because vertices from V (B − P) can be connected, at

least x+ 1 vertices from V (B−P) must be used in that path as no two vertices from

P are connected.

If p > q this means that the number of unvisited vertices from V (B−P) will run

out before those from P do. From the perspective of finding a Hamilton cycle in G,

it becomes impossible to visit all of P , therefore G is not Hamiltonian.

If p = q then a Hamilton cycle could be found in B, but in the process, detaching

all of V (B−P) from G with respect to finding a Hamilton cycle in G. Unless B = G,

G is not Hamiltonian.

Theorem 10.1.1. Let P be the subset of internal vertices from a half-bipartite sub-

graph B, with p = |P | and q = |V (B) − P |. If p = q − 1 then B is a reducible

subgraph.

Proof. Let B be a half-bipartite subgraph of G as described above and assume that

a single cycle segment has entered and left B without visiting all vertices.

Chapter 10: Reduction Technique 81

Then x visited vertices from P will be gone with respect to finding a Hamilton

cycle in G and at least x+1 vertices gone from V (B−P), leaving a new half-bipartite

subgraph with p′ = p− x and q′ = q − x− 1.

Since p = q− 1, then by substitution p′ = q− x− 1 and p′ = q′. By lemma 2 this

new half-bipartite subgraph can not be used for any Hamilton cycle.

Therefore any cycle segment passing through B must completely visit B before

leaving. Therefore B is a reducible subgraph.

Definition (complete half-bipartite subgraph). Let B be a half bipartite subgraph of

G. If the subset P of internal vertices share an edge with each vertex from V (B−P),

then B is a complete half-bipartite subgraph.

Each of the subgraphs found in the Meredith graph form a complete bipartite

graph with four external vertices in one of the bipartitions and 3 internal ones in

the other. These sizes satisfy the requirements for being a reducible half-bipartite

subgraph.

10.1.2 Finding Reducible Complete Half-Bipartite Structures

Complete half bipartite subgraphs have the unique property that all of the vertices

from P all share edges with the same set of vertices.

A fairly efficient polynomial time utility for finding half-bipartite graphs based

upon this property has been created for finding all of the reducible half bipartite

subgraphs from a graph.

Chapter 10: Reduction Technique 82

The algorithm used to find the subgraphs is based on string comparisons of strings

generated by listing all of the vertices adjacent to a given vertex in ascending order. By

matching strings that repeat to the same half-bipartition, the set P can be generated

for each half-bipartite subgraph in a graph.

Past knowing these steps, the design and implementation of the algorithm that

implement this idea of string matching is not discussed further as it is beyond the

scope this work.

The important points are that reducible complete half-bipartite subgraphs are

detectable in polynomial time, and they can be used to generate a graph reduction

as described in the next section.

10.2 Reducing G

Let ZG be a collection of disjoint reducible subgraphs from G. A new reduced

graphG′ can be formed fromG and ZG by simply copyingG intoG′ and replacing each

subgraph, R, by a single vertex v, in G′ and ensuring that all edges that connect to

vertices from R are represented as edges incident to v, being sure to discard duplicates

and loops.

This new graph G′ can subsequently be scanned for its own collection, Z ′G, of

disjoint reducible subgraphs and the process can be repeated for some new graph G′′,

and so on. Let α be the number of times a reduction is performed in this way.

The recursively reduced graph, Gα, can then be searched with the multi-path

algorithm with an exponential increase in performance.

Chapter 10: Reduction Technique 83

Theorem 10.2.1. Let Gα be the ultimate graph produced though a series of reductions

using disjoint reducible subgraphs from each intermediate graph and the original graph

G. If Gα is non-hamiltonian, so too is G

Proof. Let the series of graphs generated during the reduction of G towards Gα be

G1, . . . , Gα−1. Let Gα be a non-Hamiltonian graph. This means that no Hamilton

cycle could be formed that enters or exits any of the subgraphs in Gα−1. Even if

Hamiltonian paths could be formed between two external vertices for any reducible

subgraph in Zα−1
G , none of them could be used. Therefore Gα−1 is non-Hamiltonian

and by induction so is G.

The use of this technique on the Meredith graph results in a search performed on

the Petersen Graph. As shown in chapter 4, this graph is processed by the multi-

path with an extremely small search tree. As will be shown in section 11.2.3, simply

running the algorithm on the original graph takes a very long time.

10.2.1 False positives: an Unwanted Side Effect of Reduction

If Gα is found to be Hamiltonian, there is no guarantee that G is as well. One of

the reasons for this is similar to the proof given for theorem 10.2.1.

With any Hamilton cycle, C, from Gα, the two edges incident to any v ∈ V (Gα)

that represent a reducible subgraph, R ∈ Gα−1, must reflect edges from E(Gα−1)

incident to two separate external vertices of R. In fact many combinations of external

vertices are possible from R with a single pair of edges incident to v. If none of those

combinations of external vertices have a Hamilton path in R, then C does not reflect

a Hamilton cycle in Gα−1.

Chapter 10: Reduction Technique 84

If this is the case for all C from Gα, Gα−1 is not Hamiltonian.

The other reason why C may not reflect a Hamilton cycle in Gα−1 is the case

where the two edges incident to v only reflect a single external vertex, u, from R.

This is caused because the reduction reduces all edges out of R to a single point. Two

edges incident u may connect outside of R in a way that is not done through any

other points from R. Gα does not care about this when a Hamilton cycle is being

found, because to it v is a single vertex, not a collection of them.

Chapter 11

Analysis and Verification

11.1 Verification

Verification of the implementation of the multi-path algorithm was performed in

two main ways. The first was by comparing the Hamilton cycle counts generated by

the implementation for [Koc92] and this thesis. The second was by repeatedly modi-

fying the search space for the same Hamiltonian graph and comparing the Hamilton

cycle counts. If the counts stayed the same after many modifications it was assumed

that the algorithm was working properly.

The search space was modified by randomly permuting the numerical labels of a

graph’s vertices and then sorting the adjacency lists in ascending order based upon

the new labeling. These isomorphic graphs were then searched using a static vertex

ordering of one through n.

Many thousands of permutations were used on the same graph to verify that the

cycle counts were unchanging.

85

Chapter 11: Analysis and Verification 86

In this way the subtle impact of the current anchor point on the size of the

separating set while pruning was initially discovered and finally solved. The process

of trying to discover where and why the Hamilton cycle counts differed led to many

of the improvements introduced in this thesis.

11.2 Analysis

All of the results listed in this section were generated by a PowerPC G5 running at

2.5 GHz. The operating system was Mac OS X 10.4.10 (Tiger). While the machine

was a 2 * Dual Core Machine (4 processors), only one processor was used as the

algorithm as implemented is purely a sequential one.

A unix command line utility was written using the attached source code from

within this thesis to run the implementation of the algorithm from this thesis.

The previous version of the algorithm for [Koc92] was run from within a modified

version of Groups and Graphs [gng]. This version was ported from CodeWarrior to

the XCode programming environment in order to use the gcc compiler [ccg]. The

version label of the compiler is ‘powerpc-apple-darwin8-gcc-4.0.1’.

All test data is based on object code generated using the same optimization pa-

rameters during compilation (gcc -fast -mcpu=G5 -mtune=G5).

The source code of the implementation for this thesis should be fully portable

across BSD, Linux and other Posix compliant operating environments. No endian-

ness issues exist in the code and it should compile on most computing architectures.

Essentially if gcc has been ported with the standard set of c libraries, it should compile

with little or no modification.

Chapter 11: Analysis and Verification 87

The testing is broken up into three parts. The first, and most extensive part,

demonstrates the performance of the new algorithm versus the old using a set of

graphs known as knight’s graphs, based upon the movement of knight’s on a variably

sized chess board. As mentioned in [Van98], graphs of this type are suitable for

comparative analysis of Hamilton cycle algorithms because they tend to be difficult

to fully explore. These tests attempt to demonstrate the improvements brought on

by the new segment extension algorithm, by the vertex selection modifications and

the changes to the pruning algorithm.

The second part of the test attempts to compare the two algorithms performance

against complete graphs. The characteristics of the complete graphs allow for an

examination of the improvements brought by the removal of pass by value data.

The final section of the analysis is based on the reduction algorithm and its use on

the Meredith graph, or more specifically on what the consequences are of not using

it are.

11.2.1 Knight’s Move Graphs

Table 11.1 introduces a set of the knight’s graphs used for testing the implemen-

tations of the algorithm. Attributes such as number of vertices and edges along with

the Hamilton cycle counts generated by the algorithms are listed.

Table 11.2 lists the timing results for various parameters on the implementations

of both versions of the algorithm. Time told represents the only timing results from

the previous implementation from [Koc92]. The times for told were produced using

no pruning.

Chapter 11: Analysis and Verification 88

Table 11.1: Set of knight’s move graphs used for primary test results. The Hamilton
cycle counts found when exhaustive searching the entire search space for each graph
is listed.

Graph n ε Hamilton cycles

kn36898 64 136 3018210
kn35341 64 136 2112
kn4x8 32 64 0
kn5x6 30 62 8
kn5x8 40 90 44202
kn6x6 36 80 9862
kn6x7 42 98 1067638
kn7x4 24 86 207360000

Table 11.2: Times generated for the graphs from table 11.1. Each of the times
listed represent different algorithm parameters in use. The parameters are discussed
throughout the analysis. All times listed are in seconds.

Graph told tdesc tmax tasc tbu ttd

kn36898 7.58 1.67 2.42 1.78 1.68 3.21
kn35341 0.022 0.011 0.010 0.0086 0.019 0.023
kn4x8 0.00015 0.000077 0.00016 0.00007 0.000120 0.00013
kn5x6 0.00010 0.000026 0.000027 0.000063 0.000038 0.000034
kn5x8 0.087 0.026 0.029 0.026 0.026 0.039
kn6x6 0.022 0.0077 0.0079 0.0059 0.0081 0.011
kn6x7 2.42 0.74 0.78 0.53 0.76 1.18
kn7x4 943.01 61.18 220.64 41.79 41.25 80.37

The times generated with both tdesc and tasc correspond to static orderings of

the vertices with respect to descending and ascending degree sequences. The times

in tmax represent times generated using a maximum degree vertex remaining to Gr

when selecting the next anchor point. This is the method used from [Koc92].

The times represented by tbu and ttd are the results of using the pruning algorithm

during the search. Times from tbu are for the bottom up approach of pruning the

search space and ttd are an approximation of the top down approach applied to the

implementation from this thesis. It is approximate to that used by [Koc92] in that the

Chapter 11: Analysis and Verification 89

Table 11.3: Various ratio’s of the timing results from table 11.2.

Graph told/tdesc told/tmax tmax/tdesc tasc/tdesc tbu/tdesc ttd/tdesc

kn36898 4.54 3.13 1.45 1.06 1.00 1.92
kn35341 2.00 2.20 0.91 0.78 1.73 2.09
kn4x8 1.95 0.94 2.08 0.91 1.56 1.69
kn5x6 3.85 3.70 1.04 2.42 1.46 1.31
kn5x8 3.35 3.00 1.11 1.00 1.00 1.50
kn6x6 2.86 2.78 1.02 0.77 1.05 1.43
kn6x7 3.27 3.10 1.05 0.72 1.03 1.59
kn7x4 15.41 4.27 3.61 0.68 0.67 1.31

pruning tests are run after each anchor point is selected and just before extendAnchor

is run. The subtle difference being that the top down pruning occurs after each

consistent state is reached due to the selection of a single branching edge in [Koc92].

Both tbu and ttd use the default descending degree sequence ordering for the vertices.

Table 11.3 provide some ratio’s for comparing the performance of the algorithm

based on the timings from 11.2.

Effects of Vertex Ordering

In general when comparing the results using the ratios provided in Table 11.3, the

changes to the algorithm show a substantial speed up over the previous algorithm from

[Koc92]. The exception seems to be in the case when comparing the ‘kn4x8’ graph

with the old algorithm when using the max degree approach in the new algorithm.

One possibility here is that because the graph is not Hamiltonian and because the

search happens so quickly, the number of branchings that occurs must be relatively

few in number. This suggests that the faster sequential copies of the pass by value

approach offsets the other gains of the new algorithm when using the max degree

Chapter 11: Analysis and Verification 90

approach when a lower number of branches occur. More on this is explored in the

second part of the analysis.

One graph in particular seems to gain greatly by just using a descending degree

sequence vs using the max degree approach. Graph ‘kn7x4’ has a great speedup over

the original in this case. When removing the affects of the static orderings using tmax,

the speed up stays in line with the other graphs with larger search areas.

By changing to an ascending degree sequence quite a few of the graphs show a

speedup, particularly the ‘kn7x4’ graph, however the impact on the other graphs

suggest that more than just degree values have an impact the size and shape of the

search space.

Pruning Algorithm

The improvements brought by changing when to test for a pruning condition are

made most apparent by the ‘kn7x4’ graph. Without the improvement, based on the

results shown, it could be assumed that little or no pruning actually takes place in

this graph. But the 0.67 ratio for the tbu/tdesc suggests that quite a bit of pruning

occurs.

In general the bottom up approach seems to provide quite a speed up compared to

the top down approach. However the results for the ‘kn5x8’ graph suggest that in the

cases where a smaller search space exists, a larger number of calls to the separating

set test probably occur due to the nature of how the algorithm climbs up the tree in

the bottom up approach.

Chapter 11: Analysis and Verification 91

11.2.2 Complete Graphs

Table 11.4: Comparison of both multi-path Algorithms using no pruning and the
default vertex orderings on a set of complete graphs. All times are in seconds.

n ε told tnew told/tnew

12 66 11.12 4.19 2.65
13 78 136.00 50.53 2.69
14 91 1811.18 660.83 2.74
15 105 26848.33 9173.40 2.92

Table 11.4 contains the second set of comparative data of the two implementations

based on tests of the complete graphs on 12 through 15 vertices. Because of the high

degree values of each of the vertices in the complete graph, the impact of the new

segment extension algorithm is lessened.

Additionally running the pruning algorithm on these graphs is pointless, as most

of the leaves result in Hamilton cycles.

Because of these factors, more emphasis can be placed upon the removal of the

pass by value data and the expected O(n) improvements per branching edge. As can

be seen in the data provided, as the number of vertices increase so does the speedup.

While it is impossible to test, theoretically it would be expected that this speedup

would approach n for larger values of n. The initially lower speedup can partially be

attributed to the differences in random memory movements vs fast sequential ones,

since the new algorithm has more random memory reads and writes while restoring the

graph states. As the number of vertices increase, the size of the O(n) sequential blocks

used in the pass by value approach increase, and the benefit of the fast sequential

copy of data loses ground to the lower O(∆S) random memory copies.

Chapter 11: Analysis and Verification 92

11.2.3 Reduction Technique on the Meredith Graph

The Meredith graph is a non-hamiltonian graph that is extremely difficult for the

multi-path algorithm to deal with. Much of the search space is spent with multiple

segments going into and out of individual half-bipartite subgraphs. This is what the

reduction technique is meant to stop. Once the Meredith graph is reduced to the

Petersen graph, the time spent testing it is meaningless compared to the original.

While testing a previous version of the new algorithm, one that was closer to

[Koc92] in performance, the algorithm spent over twenty five days running the al-

gorithm before a power failure terminated the process. This was one of the prime

motivations for moving towards an algorithm that could easily incorporate check-

pointing.

The new algorithm without pruning takes 11 days to exhaustively prove that the

Meredith graph is non-Hamiltonian. With pruning enabled, this drops to only 4 days!

Because of the variability in the speed up between graphs, it is hard to surmise what

the actual runtime would be for the implementation from [Koc92].

However 4 days verses less than a second is a good indicator of how powerful the

reduction technique could be when fully developed.

Chapter 12

Further Work

During the course of developing the improvements described by this work many

ideas of potential further study were envisioned with respect to the multi-path method,

pruning the search space, and the reduction technique. A few of these ideas are listed

here.

12.1 Multi-Path Algorithm

12.1.1 A Closer Examination of Vertex Order

A more extensive treatment of the static ordering of anchor point selection could

allow for the identification of more properties of graphs and allow for further reduc-

tions in the size of the search space of the multi-path method.

93

Chapter 12: Further Work 94

12.1.2 Algorithm for Directed Graphs

The extension algorithm developed here could be adapted to work for directed

graphs as most of the concepts carry over between graph types.

12.1.3 Fine Tuning for the TSP

As seen with the explosive growth in time to exhaustively search complete graphs,

it is still not very likely that an exhaustive approach to the Traveling Salesmen

Problem, or TSP, will be forthcoming with the results given here.

However the approximate results of the algorithms currently used by the TSP,

could be used to seed the search space of the multi-path algorithm. In this way, by

fixing certain segments and allowing others to change, a narrower area of the search

space could be navigated and possible better solutions found.

12.1.4 A Work Stealing Parallel Implementation

Since most of the time searching is spent close to the right hand side of the tape

when visualizing the search space with a Turing Machine, the left hand size of the

tape could be used to offload work to parallel searches of the same graph.

A parallel algorithm could be developed that uses the approach of stealing branch-

ing edges from anchor points located on the left hand side of the tape.

The communications overhead of such an algorithm would be minimal and the

execution would be extremely parallel, leading to potentially extremely good scaling

characteristics.

Chapter 12: Further Work 95

12.2 Pruning Algorithm

12.2.1 Constructing Components for Better Separating Sets

The current mechanism for pruning back the search space approximates the changes

to ω(Gr −K ′)− |K ′|. It would be nice to attempt to reconstruct the actual compo-

nents of Gr while pruning back the search space. This could allow for better detection

of what vertices to add to K ′ and even larger values of ω(Gr−K ′)−|K ′| as each new

member of the separating set may actually disconnect two components joined via the

segment the new member came from.

By utilizing existing merge-find techniques for building up components, a method

of creating a better separating set may be found.

12.3 Reduction Technique

12.3.1 Finding More Reducible Subgraphs

Finding reducible Complete Half-Bipartite Structures is a fairly limited endeavor

for most graphs, especially when applied recursively as in the reduction technique.

However reducible Half-Bipartite Structures that are not complete may occur with a

great deal more frequency, especially in reduced graphs. Strategies for finding them

should be explored.

Chapter 12: Further Work 96

12.3.2 Reconstructing Hamilton Cycles in Gα−1

The utility of the reduction technique is currently limited to quickly processing

otherwise hard non-hamiltonian graphs.

Since all Hamilton cycles in Gα−1 must follow the route set out by Hamilton cycles

in Gα, a way to recursively reconstruct Hamilton cycles from Gα up to G can probably

be found and some work to that effect has already been started.

Bibliography

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory With Applications. North
Holland, 1976.

[ccg] GNU C Compiler. http://gcc.gnu.org/.

[Chr75] Nicos Christofides. Graph Theory: An Algorithmic Approach. Academic
Press Inc, 1975.

[gng] Groups and Graphs. http://www.combinatorialmath.ca/G&G/index.html.

[Koc92] William Kocay. An extension of the multi-path algorithm for finding hamil-
ton cycles. Discrete Mathematics, (101):171–188, 1992.

[Rub74] Frank Rubin. A search procedure for hamilton paths and circuits. J. ACM,
21(4):576–580, 1974.

[Van98] Basil Vandegriend. Finding hamiltonian cycles: Algorithms, graphs and
performance. Master’s thesis, University of Alberta, 1998.

[Wei95] Mark Allen Weiss. Data structures and algorithm analysis (2nd ed.).
Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1995.

97

Appendix A

Multi-Path Code

A.1 Data Types

typedef s igned i n t SInt ;
typedef unsigned i n t UInt ;
typedef i n t Vertex ;

/∗ Adjacency L i s t . ∗/

typedef s t r u c t ve r t e x a r c {
Vertex ta r g e t ; /∗ Ver tex ad j a c en t to c u r r e n t v e r t e x . ∗/
s t r u c t ve r t e x a r c ∗next ; /∗ Next a r c (n u l l t e rm ina t ed l i s t) . ∗/
s t r u c t ve r t e x a r c ∗prev ; /∗ Pr e v i o u s a r c (c i r c u l a r l i s t) . ∗/
s t r u c t ve r t e x a r c ∗ c r o s s ; /∗ Adjacent v e r t e x ’ s l i s t . ∗/

} VArc ;

/∗ Graph I n f o rma t i o n S t r u c t u r e Adapted from Groups and Graphs . ∗/

typedef s t r u c t graph {
char ∗name ; /∗ Graph t i t l e . ∗/
UInt ver tex count ; /∗ Number o f V e r t i c e s . ∗/
UInt edge count ; /∗ Number o f edges . ∗/
VArc ∗∗ a d j l i s t s ; /∗ Array o f ad j a c ency l i s t s . ∗/
bool ∗∗ adj matr ix ; /∗ Adjacency mat r i x ∗/
UInt ∗ degree ; /∗ deg r ee l i s t ∗/

} GraphInfo ;

/∗ F l ag s c o n t r o l l i n g o v e r a l l s t a t e o f mu l t i−path a l g o r i t hm ∗/

typedef s t r u c t h c f l a g s {
bool usePruning ;
bool pruneOnce ;
bool setPruningFlags ;
bool i sHami l ton ian ;
bool i sHami ltonCycle ;

98

Appendix A: Multi-Path Code 99

} HCFlags ;

/∗ Bit− f i e l d r e f e r e n c e f o r edge s t a t u s s t o r e d i n tape e n t r i e s ,

the s t a t u s f l a g s i n code have most l y same meaning to tho s e found i n

s e c t i o n 7 . 3 . The main d i f f e r e n c e s i s i f the anchor po i n t

i s the s ou r c e v e r t e x o f the b ranch i ng arc , the f l a g HC FLIP SOURCE i s used . ∗/

typedef enum {
HC ENDPOINT = 1 ,
HC ANCHOR POINT = 2 ,
HC ANCHOR EXTEND = 4 ,
HC FLIP SOURCE = 8 ,
HC FORCED DEG2 = 16 ,
HC FORCED = 32 ,
HC HAMILTONIAN = 64 ,
HC TERMINATE = 128

} HCArcStatus ;

/∗ Sto rage Type o f e n t r i e s f o r each p o s i t i o n i n Tur ing Machine ∗/

typedef s t r u c t hc tape {
HCArcStatus s t a tu s ;
VArc ∗ arc ;

} HCTape ;

/∗ Mult i−Path S ta t e ∗/

s t r u c t hc s t a t e {
HCFlags f l a g s ;
GraphInfo ∗graph ; /∗ r e f e r e n c e to t a r g e t graph f o r s e a r c h ∗/
HCDFSRef d f s ; /∗ s t a t e f o r p run ing a l g o r i t hm ∗/
VArc ∗∗ ad jL i s t ; /∗ ad j a c ency l i s t s f o r each v e r t e x ∗/
UInt vertexCount ; /∗ i n i t i a l number o f v e r t i c e s i n graph ∗/
HCTape ∗pos ; /∗ c u r r e n t p o s i t i o n o f r ead / w r i t e head ∗/
HCTape ∗ o r i g i n ; /∗ s t a r t o f Tape f o r t u r n i n g machine ∗/
UInt ∗ degree ; /∗ c u r r e n t deg r ee o f each v e r t e x ∗/
Vertex ∗ v i r tua lEdge ; /∗ c u r r e n t v i r t u a l edges ∗/
Vertex ∗ vertexOrder ; /∗ o r d e r f o r anchor po i n t s e l e c t i o n ∗/
VArc ∗ removedEdges ; /∗ c u r r e n t l i s t o f removed edges ∗/
VArc ∗∗ removedEdgesStack ; /∗ s t a c k o f l i s t s o f removed edges ∗/
Vertex ∗deg2Stack ; /∗ f o r c e d v e r t e x s t a c k ∗/

} ;

typedef s t r u c t hc s t a t e ∗ HCStateRef ;

Appendix A: Multi-Path Code 100

A.2 Extending Segments

A.2.1 Support Routines for Extending Segments

/∗ f i n d and remove a r c from ad j a c ency l i s t ‘ Lx ’ ∗/

void
removeArc (VArc ∗∗Lx , VArc ∗a) { /∗ . . . ∗/ }

/∗ i n s e r t a r c to the top o f ad j a c ency l i s t ‘ Lx ’ ∗/

void
i n s e r tArc (VArc ∗∗Lx , VArc ∗a) { /∗ . . . ∗/ }

/∗ Removes the b i t f l a g s t ha t i n d i c a t e an endpo in t o f a segment .

R e s t o r e s the incoming a r c ’ a ’ i f n e c e s s a r y . ∗/

void
f i x InArc (VArc ∗∗L , VArc ∗a , Vertex x , UInt ∗kPtr)
{

UInt k = ∗kPtr ;

i f (k & (HC ENDPOINT)) {
i n s e r tArc (L + x , a) ;
k &= ˜HC ENDPOINT;
∗kPtr = k ;

}
} /∗ f i x I n A r c ∗/

/∗ Remove a l l but one o f the incoming a r c s o f the s ou r c e v e r t e x o f a r c ’ a ’ .

The i n i t i a l incoming a r c (a−>c r o s s) i s not removed . ∗/

bool
removeForcedD2InArcs (VArc ∗∗L , VArc ∗a , UInt ∗d , Vertex ∗∗d2Ptr)
{

Vertex y ;
UInt dy ;

Vertex ∗d2 = ∗d2Ptr ;
VArc ∗p = a−>prev ;

do {

y = p−>t a r g e t ;
dy = d [y] ;

i f (dy == 2) break ;

Appendix A: Multi-Path Code 101

i f (−−dy == 2) ∗(++d2) = y ;

d [y] = dy ;
removeArc (L + y , p−>c r o s s) ;
p = p−>prev ;

} whi le (a != p) ;

i f (a != p) {

/∗ deg 1 v e r t e x encounte r ed ∗/
/∗ r e s t o r e from a to n b e f o r e e x i t i n g ∗/

a = a−>prev ;
whi le (a != p){

y = a−>t a r g e t ;
d [y]++;
in s e r tArc (L + y , a−>c r o s s) ;
a = a−>prev ;

}

return t rue ;
}

∗d2Ptr = d2 ;
return f a l s e ;

} /∗ removeForcedD2InArcs ∗/

A.2.2 Main Routine for Extending Segments

/∗ Extend a l l segments f o r t h i s s t a t e o f the graph .

The e x t e n t i o n o f the segment i s attempted from both s i d e s o f the segment u n t i l

no f u r t h e r e x t e n t i o n p o s s i b l e w i th c u r r e n t graph s t a t e .

Th i s p roc edu r e f o l l o w s the i n i t i a l v e c t o r p r o v i d ed by the a r c ’ a ’ and f o l l o w s

the path u n t i l no deg r ee 2 v e r t e x i s encounte r ed or u n t i l a c y c l e i s c r e a t e d

by h i t t i n g v e r t e x ’ z ’ (the o t h e r s i d e o f the segment) .

When the e x t e n t i o n i n c u r r e n t d i r e c t i o n p r o v i d ed by a r c ’ a ’ can go no f u r t h e r ,

the endpo in t ’ z ’ may have been reduced to deg r ee 2 . I n t h i s ca s e the new

endpo in t and z a r e swapped , a new i n i t i a l a r c i s chosen at z and the p r o c e s s

i s r e p ea t ed u n t i l s e a r c h t e rm ina t ed or u n t i l no f u r t h e r e x t e n t i o n p o s s i b l e

from e t h e r s i d e o f the segment .

Once a segment has been comp l e t e l y ex tended to i t s maximal l e n g t h w i t h i n i t ’ s

l o c a l domain , the p r o c e s s i s r e p ea t ed on a new segment u n t i l the deg r ee 2

Appendix A: Multi-Path Code 102

s t a c k ’ d2 ’ i s r educed to 0 .

Procedure r e t u r n s t r u e i f c u r r e n t s t a t e o f graph t e rm i n a t e s sea rch , i e . when a

v e r t e x i s r educed to deg r ee o f 1 or a c y c l e i s f o r c e d .

A c y c l e can on l y be f o r c e d when the c u r r e n t segment en coun t e r s i t s o t h e r

endpo in t wh i l e t r y i n g to extend . ∗/

bool
extendSegments (HCStateRef s , VArc ∗a , Vertex z , UInt k , Vertex ∗d2)
{

Vertex ex , x ;
VArc ∗c ; /∗ c r o s s a r c d i r e c t e d at c u r r e n t endpo in t ∗/

UInt ∗d = s−>degree ;
Vertex ∗e = s−>v i r tua lEdge ;
VArc ∗∗L = s−>ad jL i s t ;

HCTape ∗hz = NULL; /∗ tape p o s i t i o n f o r o t h e r endpo in t ∗/
HCTape ∗hx = s−>pos ; /∗ tape p o s i t i o n f o r c u r r e n t endpo in t ∗/

extend segment :

/∗ attempt to t r a v e r s e a r c a ∗/

c = a−>c r o s s ;
x = a−>t a r g e t ;

/∗ s t o r e c r o s s i n tape so tha t i n n e g a t i v e d i r e c t i o n a r c t a r g e t a lways

p o i n t s at a v e r t e x to be r e s t o r e d ∗/

hx++;
hx−>arc = c ;

i f (x == z) {

/∗ a c y c l e i s f o r c e d ∗/

i f (hz) f i x InArc (L , hz−>arc , z , &hz−>s t a tu s) ;

/∗ r e s t o r e f o c a l po in t , no l o n g e r n e s s a r y to ma in ta i n tape p o s i t i o n

at t h i s p o i n t ∗/

d [c−>t a r g e t] = 2 ;
s−>pos = hx − 1 ;

/∗ de t e rm ine i f c y c l e i s a Hami l ton c y c l e ∗/

hx++;
s−>f l a g s . i sHami ltonCycle = hx−>s t a tu s == HC HAMILTONIAN;

Appendix A: Multi-Path Code 103

return f a l s e ;
}

i f ((ex = e [x])){

/∗ a r c has c o l l i d e d wi th a v i r t u a l edge ∗/

/∗ attempt remove the t a r g e t o f a r c (x) from graph and con t i nu e

to extend the segment . ∗/

i f (d [x] > 2) {
i f (removeForcedD2InArcs (L , c , d , &d2)){

/∗ en su r e tha t segment endpo in t i n f o removed and

tha t s ou r c e o f a r c a i s p l a c ed back on graph ∗/

i f (hz) f i x InArc (L , hz−>arc , z , &hz−>s t a tu s) ;
hx−>s t a tu s = k ;
s−>pos = hx ;
return f a l s e ;

}

k |= HC FORCED DEG2;
}

hx−>s t a tu s = k | HC FORCED;
d [x] = 0 ;

i f (d [ex] != 2) {

/∗ The o th e r s i d e o f o f v i r t u a l edge w i l l not a l l ow segment to

con t i nu e i n c u r r e n t d i r e c t i o n ∗/

i f (d [z] != 2) {
x = ex ;
goto f i n i sh s egment ;

}

/∗ Othe r s i d e o f segment i s to be f o r c e d onto the c y c l e , grow

segment i n the x−>z d i r e c t i o n .

Two p o s s i b l i t i e s on what a r c to ex tend at z .

The f i r s t i s t ha t z was a deg r ee 2 v e r t e x not on a v i r t u a l

edge . The L [z] a r c i s the a r c f i r s t used to extend segment

towards c u r r e n t x . S i n c e L [z] i s o f deg r ee 2 we know tha t the

p r e v i o u s a r c i s the o th e r a r c p o i n t i n g out o f z .

The second case i s t ha t L [z] i s a l r e a d y on a v i r t u a l edge . I n

Appendix A: Multi-Path Code 104

t h i s ca s e L [z] w i l l o n l y have one a r c i n i t s l i s t and

L [z]−>prev == L [z] .

By choo s i ng L [z]−>prev i n both c a s e s an e x p e n s i v e branch i s

avo ided .

The same r e a s o n i n g a p p l i e s whenever L [z]−>prev i s chosen when

sw i t c h i n g endpo i n t s ∗/

a = L [z]−>prev ;
d [z] = 0 ;

i f (hz) f i x InArc (L , hz−>arc , z , &hz−>s t a tu s) ;

z = ex ;
hz = hx ;
k = 0 ;

goto extend segment ;
}

/∗ con t i nu e growing segment i n the c u r r e n t d i r e c t i o n ∗/

k = 0 ;
d [ex] = 0 ;
a = L [ex] ;

goto extend segment ;
}

i f (d [x] == 2) {

/∗ x i s deg r ee 2 , add a r c and con t i nu e i n same d i r e c t i o n ∗/
hx−>s t a tu s = k ;
k = 0 ;
d [x] = 0 ;

a = c−>prev ;
goto extend segment ;

}

/∗ Segment can not be extended f u r t h e r i n c u r r e n t d i r e c t i o n ,

remove a r c p o i n t i n g i n t o segment . ∗/

hx−>s t a tu s = k | HC ENDPOINT;
removeArc (L + x , c) ;

i f (d [z] != 2) goto f i n i sh s egment ;

Appendix A: Multi-Path Code 105

a = L [z]−>prev ;

i f (hz) f i x InArc (L , hz−>arc , z , &hz−>s t a tu s) ;

d [z] = 0 ;

z = x ;
hz = hx ;
k = 0 ;

goto extend segment ;

f i n i sh s egment :

/∗ A mu l t i g r aph may have been c r e a t e d . Segment end p o i n t s x & z may be

p h y s i c a l l y a d j a c en t a l ong wi th t h e i r new v i r t u a l edge j o i n i n g them .

Remove a c t u a l edge to take away the mu l t i g r aph s t a t u s . ∗/

i f (d [z] < d [x]) {
a = L [z] ;
whi le (a && a−>t a r g e t != x) a = a−>next ;

} e l s e {
a = L [x] ;
whi le (a && a−>t a r g e t != z) a = a−>next ;

}

i f (a) {

c = a−>c r o s s ;
removeArc (L + a−>target , c) ;
removeArc (L + c−>target , a) ;
a−>next = s−>removedEdges ;
s−>removedEdges = a ;

i f (−−d [x] == 2) {

d [z]−−;
d [x] = 0 ;

a = L [x]−>prev ;
f i x InArc (L , hx−>arc , x , &hx−>s t a tu s) ;
k = 0 ;
goto extend segment ;

}

i f (−−d [z] == 2) {
a = L [z]−>prev ;
i f (hz) f i x InArc (L , hz−>arc , z , &hz−>s t a tu s) ;
d [z] = 0 ;

Appendix A: Multi-Path Code 106

hz = hx ;
z = x ;
k = 0 ;
goto extend segment ;

}

}

/∗ a new v i r t u a l edge has been c r e a t e d tha t i s c o n s i s t a n t w i t h i n i t s l o c a l

a r ea o f the graph (i t s e ndpo i n t s) ∗/

e [z] = x ;
e [x] = z ;

/∗ check i f any more segments need to be grown ∗/

do x = ∗d2−−; whi le (x && ! d [x]) ;

i f (x) {

/∗ t h e r e i s a deg r ee 2 v e r t e x s t i l l on the s tack ,

c r e a t e a new segment or e n l a r g e an e x i s t i n g one ∗/

i f ((z = e [x])) d [x] = 0 ; /∗ e n l a r g e a segment ∗/
e l s e z = x ; /∗ s t a r t s a new segment ∗/

a = L [x] ;
hz = NULL;
k = 0 ;

goto extend segment ;
}

s−>pos = hx ;
return t rue ;

} /∗ extendSegments ∗/

A.3 Extending Branches

/∗ The t a r g e t e d a r c r e p r e s e n t s a v e r t e x a l r e a d y on a segment endpo in t and

needs to have a l l incoming a r c s removed but the a r c o ppo s i t e to ’ a ’ . Retu rns

updated s t a c k o f new f o r c e d v e r t i c e s t ha t a r e pas sed v i a d2 . ∗/

Vertex ∗
removeInArcs (VArc ∗∗L , VArc ∗a , UInt ∗d , Vertex ∗d2)
{

Vertex x ;
VArc ∗p = a−>prev ;

Appendix A: Multi-Path Code 107

whi le (p != a) {
x = p−>t a r g e t ;
i f (−−d [x] == 2) ∗(++d2) = x ;
removeArc (L + x , p−>c r o s s) ;
p = p−>prev ;

}

return d2 ;
} /∗ r emove InArcs ∗/

/∗ Extend or c r e a t e a segment and remove the v e r t e x x from the graph by

marking one or two a r c s e x t end i ng out o f i t as p i v o t a r c (s) . The c a l l to

extendAnchor must on l y be done wh i l e the graph i s i n a c o n s i s t a n t s t a t e . ∗/

bool
extendAnchor (HCStateRef s , VArc ∗∗L , Vertex ∗e , UInt ∗d , Vertex x)
{

Vertex y , ex ;
VArc ∗a ;
UInt k ;

Vertex ∗d2 = s−>deg2Stack ;

i f ((ex = e [x])){

/∗ ca se 1 : s ou r c e v e r t e x o f c u r r e n t a r c i s a l r e a d y on a v i r t u a l edge

and must be f o r c e d onto the p o t e n t i a l hami l t on c y c l e ∗/

∗ s−>removedEdgesStack++ = s−>removedEdges ;
s−>removedEdges = NULL;

a = L [x] ;
k = HC ANCHOR POINT | HC ANCHOR EXTEND;
d [x] = 0 ;
return extendSegments (s , a , ex , k , removeInArcs (L , a , d , d2)) ;

}

a = L [x] ;
y = a−>t a r g e t ;

i f ((ex = e [y])) {

/∗ ca se 2 : same as f i r s t ca s e but o r i g i n f l i p p e d ∗/

k = HC ANCHOR POINT | HC FLIP SOURCE | HC ANCHOR EXTEND;
a = a−>c r o s s ;

Appendix A: Multi-Path Code 108

∗ s−>removedEdgesStack++ = s−>removedEdges ;
s−>removedEdges = NULL;

d [y] = 0 ;
i f (! extendSegments (s , a , ex , k , removeInArcs (L , a , d , d2)))

return f a l s e ;

i f (! d [x]) return t rue ;

∗ s−>removedEdgesStack++ = s−>removedEdges ;
s−>removedEdges = NULL;

a = L [x] ;
d [x] = 0 ;
k = HC ANCHOR POINT | HC ANCHOR EXTEND;

return extendSegments (s , a , e [x] , k , removeInArcs (L , a , d , d2)) ;

}

/∗ ca se 3 : n e i t h e r the s ou r c e or the t a r g e t o f the a r c i s on a v i r t u a l

edge , s imp l e j o i n them by a v i r t u a l edge and remove the

two a r c s j o i n i n g them . ∗/

∗ s−>removedEdgesStack++ = s−>removedEdges ;

removeArc (L + y , a−>c r o s s) ;
removeArc (L + x , a) ;

e [x] = y ;
e [y] = x ;

s−>pos++;
s−>pos−>arc = a−>c r o s s ;
s−>pos−>s t a tu s = HC ANCHOR POINT;

∗ s−>removedEdgesStack++ = NULL;
s−>removedEdges = NULL;

a = L [x] ;
d [x] = 0 ;
k = HC ANCHOR POINT | HC ANCHOR EXTEND;

return extendSegments (s , a , y , k , removeInArcs (L , a , d , d2)) ;

} /∗ extendAnchor ∗/

/∗ Removed edges form a n u l l t e rm ina t ed s i n g l y l i n k e d l i s t u s i n g the a−>next v a l u e o f each arc , s t a r t i n g at a .

Re s t o r e each arc , u s i n g the a−>c r o s s to f i n d out the o r i g i n . Ensure to update deg r ee v a l u e s f o r each v e r t e x w i th a r e s t o r e d a r c . ∗/

Appendix A: Multi-Path Code 109

void
r e s to reEdges (VArc ∗∗L , VArc ∗a , UInt ∗d)
{

Vertex u , v ;
VArc ∗n ;

whi le (a) {
n = a−>next ;
u = a−>t a r g e t ;
v = a−>cros s−>t a r g e t ;
i n s e r tArc (L + u , a−>c r o s s) ;
i n s e r tArc (L + v , a) ;
d [u]++;
d [v]++;
a = n ;

}
} /∗ r e s t o r eEdg e s ∗/

/∗ Remove branch at hx . Return the anchor po i n t t ha t the b ranch i ng edge

was o f f o f . ∗/

Vertex
rotateAnchorPoint (HCStateRef s , VArc ∗∗L , Vertex ∗e , UInt ∗d ,
HCTape ∗hx , Vertex ∗∗d2Ptr)
{

Vertex ∗d2 = s−>deg2Stack ;
VArc ∗a = hx−>arc ;
UInt k = hx−>s t a tu s ;
Vertex x = a−>t a r g e t ;
VArc ∗c = a−>c r o s s ;
Vertex y = c−>t a r g e t ;

i f (k & HC ANCHOR EXTEND) {
unro l lArc (L , e , d , a , k) ;

e [e [x]] = x ;
d [x] = 2 + restoreInArcsWithCount (L , c , d) ;

removeArc (L + x , c) ;
removeArc (L + y , a) ;

} e l s e {

e [x] = 0 ;
e [y] = 0 ;

}

/∗ Res to r e edges removed du r i ng p r e v i o u s branch ∗/

Appendix A: Multi-Path Code 110

r e s to reEdges (L , s−>removedEdges , d) ;

/∗ Remove the edge c u r r e n t anchor po i n t r e p r e s e n t s and g i v e i t

to the c l o s e s t p i v o t po i n t to the l e f t to r e s t o r e . Th i s i n d i c a t e s

t ha t no more s e a r c h p o s s i b l e w i th the edge i n qu e s t i o n . (o r a t l e a s t

u n t i l p i v o t p o i n t to the l e f t encounte r ed .) ∗/

a−>next = ∗−−s−>removedEdgesStack ;
s−>removedEdges = a ;

i f (−−d [y] == 2) ∗(++d2) = y ;
i f (−−d [x] == 2) ∗(++d2) = x ;

∗d2Ptr = d2 ;

s−>pos = hx − 1 ;

i f (k & HC FLIP SOURCE) return y ;
return x ;

} /∗ r o t a t eAncho rPo i n t ∗/

Vertex
ensureCons i s t ent (HCStateRef s , VArc ∗∗L , Vertex ∗e , UInt ∗d , Vertex ∗d2 ,
Vertex x , Vertex ∗nv)
{

Vertex ey ;
Vertex y = ∗d2 ;

/∗ no v e r t i c e s have been fo r c ed , r e t u r n x as nex t p i v o t p o i n t ∗/

i f (! y) return x ;

/∗ f o r c e d v e r t i c e s , e n su r e graph i s c o n s i s t a n t ∗/

ey = e [y] ;
i f (ey) d [y] = 0 ;
e l s e ey = y ;

i f (! extendSegments (s , L [y] , ey , 0 , −−d2)) return 0 ;

/∗ x may have been abso rbed by a segment , en su r e r e t u r n o f nex t

a v a i l a b l e p i v o t ∗/

i f (! d [x]) {
s−>pos−>s t a tu s |= HC ANCHOR TYPE1;
do x = nv [x] ; whi le (! d [x]) ;

}

Appendix A: Multi-Path Code 111

return x ;
}

/∗ I n i t i a l i z e tape to f i r s t l e a f i n s e a r c h space . Retu rns t r u e on l y i f

runTurn ingMachine can be en t e r e d . ∗/

s t a t i c Vertex
primeTape (HCStateRef s , EList ∗ requiredEdges)
{

UInt dx ;
Vertex ex ;

Vertex x = s−>vertexCount + 1 ;
VArc ∗∗L = s−>ad jL i s t ;
Vertex ∗e = s−>v i r tua lEdge ;
UInt ∗d = s−>degree ;
Vertex ∗nv = s−>vertexOrder ; /∗ nv [x] i s the next v e r t e x a f t e r x ∗/
Vertex ∗d2 = s−>deg2Stack ; /∗ s t a c k o f f o r c e d v e r t i c e s , 0 means empty ∗/

/∗ check f o r any deg r ee 2 v e r t i c e s , o r s top c o n d i t i o n ∗/
whi le (−−x){

dx = d [x] ;
i f (dx < 2) return f a l s e ;
i f (dx == 2) ∗(++d2) = x ;

}

/∗ f o r c e any deg r ee 2 v e r t i c e s onto segments ∗/
x = ∗d2 ;
i f (x) {

ex = e [x] ;
i f (ex) d [x] = 0 ;
e l s e ex = x ;

i f (! extendSegments (s , L [x] , ex , 0 , −−d2))
return ! s−>f l a g s . i sHami ltonCycle ;

}

/∗ r e p e a t e d l y p l a c e b r anch i ng edges u n t i l s top c o n d i t i o n reached ∗/
x = 0 ;
do {

do x = nv [x] ; whi le (! d [x]) ;
} whi le (extendAnchor (s , L , e , d , x)) ;

return ! s−>f l a g s . i sHami ltonCycle ;

} /∗ primeTape ∗/

Appendix A: Multi-Path Code 112

A.4 Restoring Graph

s t a t i c i n l i n e UInt
restoreInArcsWithCount (VArc ∗∗L , VArc ∗a , UInt ∗d) {

Vertex v ;

UInt c = 0 ;
VArc ∗p = a−>prev ;

whi le (p != a) {
v = p−>t a r g e t ;
i n s e r tArc (L + v , p−>c r o s s) ;
d [v]++;
p = p−>prev ;
c++;

}

return c ;
} /∗ r e s t o r e I nA r c sWi thCoun t ∗/

s t a t i c i n l i n e void
unro l lArc (VArc ∗∗L , Vertex ∗e , UInt ∗d , VArc ∗a , UInt k)
{

Vertex x ;

/∗ Res to r e a r c : y<−−−a−−−−x ∗/

i f (k & HC ENDPOINT) {
x = a−>cros s−>t a r g e t ;
i n s e r tArc (L + x , a) ;
e [x] = 0 ;

} e l s e i f (k & HC FORCED) {
x = a−>cros s−>t a r g e t ;
e [e [x]] = x ;
d [x] = (k & HC FORCED DEG2)?

restoreInArcsWithCount (L , a , d) + 2 : 2 ;
}

} /∗ u n r o l l A r c ∗/

s t a t i c i n l i n e HCTape ∗
unwindSearchEdge (VArc ∗∗L , Vertex ∗e , UInt ∗d , HCTape ∗hx)
{

UInt k = hx−>s t a tu s ;
Vertex x ;

Appendix A: Multi-Path Code 113

VArc ∗a ;

/∗ r o l l back graph s t a t e to c l o s e s t anchor po i n t ∗/
whi le (! (k & (HC ANCHOR POINT | HC TERMINATE))) {

a = hx−>arc ;
x = a−>t a r g e t ;

/∗∗∗∗ NEGATIVE DIRECTION ∗∗∗∗∗/

/∗ r e s t o r e v e r t e x ∗/

unro l lArc (L , e , d , a , k) ;

d [x] = 2 ;
e [e [x]] = x ;

/∗ move tape head to the l e f t and r e s t a r t l oop ∗/
hx−−;
k = hx−>s t a tu s ;

}

return hx ;

} /∗ unwindSearchEdge ∗/

Appendix B

Pruning Algorithm

B.1 Data Types

/∗ S t r u c t u r e s t o r i n g DFS s t a t e i n f o rma t i o n . Th i s i s f o r a non−r e c u r s i v e

d f s a l g o r i t hm tha t p r o c e s s e s the e n t i r e s t a c k manua l l y . ∗/

s t r u c t dfs compbipt {

/∗ ! F lag i n d i c a t i n g i f t a r g e t graph i s b i p a r t i t e . I f i n i t i a l l y s e t

to f a l s e the b i p a r t i t i o n a l g o r i t hm i s not run . ∗/

bool b i p a r t i t e ;

/∗ ! Number o f components found . ∗/

UInt components ;

/∗ ! Number o f c u t p o i n t s found . ∗/

SInt cu tpo in t s ;

/∗ ! D i f f e r e n c e i n b i p a r t i t i o n s e t s i z e s . ∗/

SInt b i p a r t i t e d i f f ;

/∗ ! The c u r r e n t count (dfnum) o f the number o f v e r t i c e s t r a v e r s e d by the

d f s a l g o r i t hm ∗/

UInt depth ;

/∗ ! Ar ray i ndexed by v e r t i c e s . I n d i c a t e s t r a v e r s a l number o f each

i ndexed v e r t e x . ∗/

114

Appendix B: Pruning Algorithm 115

UInt ∗ v i s i t ;

/∗ ! Ar ray i ndexed by v e r t i c e s . I n d i c t a t e s l owe s t t r a v e r s a l v a l u e

encounte rd by the i ndexed v e r t e x du r i ng the d f s . ∗/

UInt ∗ low ;

/∗ ! Ar ray i ndexed by v e r t i c e s . A non−z e r o v a l u e at a v e r t e x ’ s i nd e x

i n d i c a t e s t ha t s a i d v e r t e x i s a c u t p o i n t . The v a l u e i n d i c a t e s

the number o f p o t e n t i a l components s u r r o und i n g the i ndexed v e r t e x . ∗/

UInt ∗branches ;

/∗ ! Ar ray i ndexed by v e r t i c e s . Conta in s b i p a r t i t e s e t membership f o r

i ndexed v e r t i c e s . ∗/

bool ∗ co l our ;

/∗ ! Ar ray i ndexed by v e r t i c e s . Conta in s node p o i n t e r o f a v e r t e x ’ s a r c

p o i n t i n g to the r e t u r n v e r t e x f o r the non−r e c u r s i v e d f s a l g o r i t hm .

The d f s a l g o r i t hm i n d f s c c b u s e s the c i r c u l a r l y l i n k e d p rev

v a l u e o f a node to t r a v e r s e the t a r g e t graph . The v a l u e s t o r e d

by the s top a r r a y i s used to s top i t e r a t i o n ove r a v e r t e x and

ascend back up the s e a r c h t r e e . ∗/

VArc ∗∗ stop ;

/∗ ! Ar ray i ndexed by v e r t i c e s . Conta in s node p o i n t e r o f nex t a r c to

t r a v e r s e when c o n t r o l p a s s e s back to the i ndexed v e r t e x du r i n g

the d f s a l g o r i t hm i n d f s c c b . ∗/

VArc ∗∗ i t e r a t o r ;

/∗ ! Number o f v e r t i c e s s t r u c t u r e a l l o c a t e d wi th ∗/

UInt s t a t e S i z e ;

bool isXCutPt ;

} ;

B.2 Depth First Search (DFS)

B.2.1 Main DFS algorithm

/∗ ! I n i t i a l i z e d f s s t a t e f o r f i r s t c a l l to d f sCu tB i p a r t

\param s d f s s t a t e to be i n i t i a l i z e d

\param pt s Number v e r t i c e s i n unmod i f i ed t a r g e t graph .

Appendix B: Pruning Algorithm 116

\param bp F lag i f b i p a r t i t i o n a l g o r i t hm shou ld be run

by d f s c c b to check i f graph i s b i p a r t i t e .

∗/

s t a t i c void
initDFSCutBipart (HCDFSRef dfs , bool bp)
{

UInt b l = dfs−>s t a t e S i z e ∗ s i z e o f (UInt) ;

memset (dfs−>v i s i t , 0 , b l) ;
memset (dfs−>branches , 0 , b l) ;

dfs−>depth = 0 ;
dfs−>cu tpo in t s = 0 ;
dfs−>components = 0 ;
dfs−>b i p a r t i t e = bp ;
dfs−>isXCutPt = f a l s e ;

dfs−>b i p a r t i t e d i f f = 0 ;

} /∗ i n i t d f s c o m p b i p t ∗/

/∗ !

T r a v e r s e s graph i n a depth f i r s t s ea rch , f i n d i n g components , c u t p o i n t s

and b i p a r t i t i o n s .

Th i s non r e c u r s i v e v e r s i o n r e q u i r e s e n t i r e s t a c k to be a l l o c a t e d at once .

Th i s i s hand led by a l l o c d f s c ompb i p t .

P r i o r to the f i r s t c a l l to d f s c c b f o r a t a r g e t graph , i n i t d f s c o m p b i p t

must be c a l l e d .

Procedure may be c a l l e d r e p e a t e d l y u n t i l r e t u r n e d v a l u e e qua l s number

o f v e r t i c e s i n t a r g e t graph . Th i s w i l l e n su r e p rope r v a l u e s f o r

the number o f components and c u t p o i n t s found i n the graph . The

s t a r t i n g v e r t e x ’ x ’ must be s e t to an u n v i s i t e d v e r t e x f o r t h e s e

c a l l s to d f s c c b .

The behav i ou r o f d f s c c b f o r subsequent c a l l s a f t e r r e t u r n e d v a l u e e qua l s

number o f v e r t i c e s i n graph i s unde f i n ed u n l e s s d f s s t a t e i s re− i n i t i a l i z e d .

See documentat ion f o r ’ s t r u c t d f s compb ip t ’ f o r d e t a i l s on

how graph i s t r a v e r s e d by d f s a l g o r i t hm .

Note : The i n i t i a l low po i n t o f a v e r t e x i s s e t to i t s v i s i t o r d e r r a t h e r

than the v i s i t o r d e r o f the p r e v i o u s v e r t e x . Th i s a l l ow s f o r

p rope r component count s to be a ch i e v ed .

Appendix B: Pruning Algorithm 117

Note : An edge i n an und i r e c t e d graph i s c o n s i d e r e d to be composed o f two

arc s , x−>y and y−>x . V a r i a b l e s o f type VArc a r e u s u a l l y r e f e r e d

to as ’ a r c s ’ by the documentat ion .

\param s Cur r en t d f s s t a t e

\param L Adjacency l i s t s f o r t a r g e t graph

\param e V i r t u a l edges c u r r e n t l y found f o r t a r g e t graph

\param x An u n v i s i t e d v e r t e x to s t a r t t r a v e r s a l

\ r e t u r n s depth / v i s i t number where d f s s topped s e a r c h i n g

\ s i d e e f f e c t s

Impor tant v a l u e s r e t u r n e d through s t r u c t d f s compb ip t :

s−>b i p a r t i t e

s−>components

s−>c u t p o i n t s

s−>b i p a r t i t e d i f f

Th i s p rocedu r e i s not t h r e a d s a f e .

∗/

UInt
dfsCutBipart (HCDFSRef dfs , VArc ∗∗L , Vertex ∗e , Vertex x)
{

UInt lx , vy ; /∗ low pt o f x , v i s i t o r d e r o f y ∗/
Vertex y ; /∗ d e s t i n a t i o n o f c u r r e n t a r c ∗/
VArc ∗cnx ; /∗ c u r r e n t node/ a r c o f i n t e r e s t ∗/

/∗ i n i t i a l i z a t i o n ∗/

UInt ∗v = dfs−>v i s i t ; /∗ v i s i t markers ∗/
UInt ∗ l = dfs−>low ; /∗ low p o i n t s ∗/
VArc ∗∗ stp = dfs−>stop ; /∗ r e t u r n a r c s ∗/
VArc ∗∗ i t r = dfs−>i t e r a t o r ; /∗ a r c i t e r a t o r s ∗/
UInt ∗br = dfs−>branches ; /∗ branch count s ∗/
Vertex z = x ; /∗ s t a r t / s top v e r t e x ∗/
VArc ∗w = L [x] ; /∗ s top / r e t u r n a r c ∗/
VArc ∗nx = w; /∗ next a r c ∗/
Vertex ex = e [x] ; /∗ o th e r s i d e o f v i r t u a l edge ∗/
UInt cp = 0 ; /∗ cut p o i n t s found ∗/
UInt cm = 0 ; /∗ components found ∗/
bool bp = dfs−>b i p a r t i t e ; /∗ b i p a r t i t e f l a g ∗/
bool ∗c = dfs−>co l our ; /∗ b i p a r t i t i o n s e t membership ∗/
bool cx = f a l s e ; /∗ x ’ s c o l o u r / s e t v a l u e ∗/
SInt b d i f f = −1; /∗ d i f f e r e n c e i n b i p a r t i t e s e t s i z e s ∗/

Appendix B: Pruning Algorithm 118

UInt d = dfs−>depth + 1 ; /∗ c u r r e n t t r a v e r s a l depth ∗/

c [x] = cx ;
stp [x] = w;
v [x] = d ;
l [x] = d ;

goto s t a r t ;

ascend :

i f (nx) goto i t e r a t e ;

/∗ f i n i s h e d wi th x , ascend ∗/

i f (x == z) goto done ;

/∗ check i f segment f o l l ow e d to get to t h i s l e v e l ∗/

i f (ex < 0) {

/∗ s e t d e s t i n a t i o n and r e p a i r segment ∗/

y = −ex ;
e [x] = y ;

} e l s e {

y = w−>t a r g e t ;

}

/∗ check f o r cut po in t , component , update low po i n t ∗/

l x = l [x] ;
vy = v [y] ;

i f (l x >= vy) {

/∗ a branch has been found f o r y−>x ∗/

br [y]++;

/∗ i f v e r t i c e s a f t e r x encoun te r y , update component count ,

o t h e rw i s e a x connec t s to y by a s i n g l e edge on l y ∗/

i f (l x == vy) cm++;

} e l s e i f (l [y] > l x) l [y] = lx ;

Appendix B: Pruning Algorithm 119

/∗ update cut p o i n t s ∗/

i f (br [x]) cp++;

/∗ advance ∗/

x = y ;
ex = e [x] ;
nx = i t r [x] ;
w = stp [x] ;

goto ascend ;

i t e r a t e :

/∗ i t e r a t e to next a r c ∗/

i f (nx != w) goto s t a r t ;

/∗ p o s s i b l y f i n i s h e d wi th x , mark c u r r e n t and next a r c as completed ∗/

cnx = nx = NULL;

/∗ a segment edge may s t i l l have to be checked ∗/

i f (ex > 0) y = ex ;
e l s e goto ascend ;

goto check ;

s t a r t :

cnx = nx ;
y = nx−>t a r g e t ;
nx = nx−>prev ;

check :

/∗ check i f v i s i t e d , update low po i n t s ∗/

vy = v [y] ;

i f (! vy) goto descend ;
i f (vy < l [x]) l [x] = vy ;
i f (bp && cx == c [y]) bp = f a l s e ;
goto ascend ;

descend :

Appendix B: Pruning Algorithm 120

/∗ v e r t e x y i s u n v i s i t e d , i n i t i a l i z e and descend i n t o i t ∗/

i t r [x] = nx ;
x = y ;
v [x] = ++d ;
l [x] = d ;
ex = e [x] ;

i f (bp) {

/∗ b i p a r t i t e c o n d i t i o n s t i l l ho lds , i n i t c o l o u r o f x ∗/

cx = ! cx ;
c [x] = cx ;
b d i f f += (cx)? 1 : −1;

}

/∗ en su r e tha t r e t u r n a r c s e t c o r r e c t l y ∗/

i f (cnx) {

w = cnx−>c r o s s ;
nx = w−>prev ;

} e l s e {

/∗ decend by f o l l o w i n g segment , mark r e t u r n path by nega t i ng ∗/

w = L [x] ;
nx = w;
ex = −ex ;
e [x] = ex ;

}

stp [x] = w;

goto s t a r t ;

done :

i f ((dfs−>isXCutPt = (br [z] > 1))) cp++;

dfs−>cu tpo in t s += cp ;
dfs−>components += cm;
dfs−>b i p a r t i t e = bp ;
dfs−>b i p a r t i t e d i f f = (bp)? b d i f f : 0 ;
dfs−>depth = d ;

Appendix B: Pruning Algorithm 121

return d ;

} /∗ d f s c c b ∗/

B.2.2 Routine for calculating Component / Separating Set
differences.

/∗ ! \ r e t u r n s t r u e i f a p run ing c o n d i t i o n found . The d i f f e r e n c e i n the number

o f components vs s e p a r a t i n g s e t i s r e t u r n e d i n c . The inSepSe t f l a g i n d i c a t e s

t ha t x shou ld be c o n s i d e r e d a pa r t o f what e v e r s e p a r a t i n g s e t found . ∗/

bool
getComponentDiff (HCDFSRef dfs , VArc ∗∗L , Vertex ∗e , UInt ∗d , Vertex ∗nv ,
Vertex x , SInt ∗c , bool inSepSet)
{

SInt m1, m2;

bool xCut = f a l s e ; /∗ i s x a cut po i n t ∗/
UInt ∗v = dfs−>v i s i t ;
UInt l e f t = (UInt)∗ c ;

/∗ i n i t i a l i z e d f s f o r f i r s t c a l l w i th c u r r e n t v e r s i o n o f graph ∗/

initDFSCutBipart (dfs , t rue) ;

/∗ f i n d components , c u t p o i n t s and b i p a r t i t i o n ∗/

i f (dfsCutBipart (dfs , L , e , x) < l e f t) {

xCut = dfs−>isXCutPt ;

/∗ d i s c onn e c t e d graph , f i n d any r ema in i ng cut po i n t s , components ∗/

dfs−>b i p a r t i t e = f a l s e ;
dfs−>b i p a r t i t e d i f f = 0 ;

/∗ keep runn ing d f s on u n v i s i t e d v e r t i c e s u n t i l a l l v i s i t e d ∗/

do {
whi le (v [x] | | ! d [x]) x = nv [x] ;

} whi le (dfsCutBipart (dfs , L , e , x) < l e f t) ;

m1 = dfs−>components − dfs−>cu tpo in t s
− ((! xCut && inSepSet) ? 1 : 0) ;

∗c = m1;
return t rue ;

}

Appendix B: Pruning Algorithm 122

xCut = dfs−>isXCutPt ;

/∗ e i t h e r components and cut po i n t s , o r a b i p a r t i t i o n wi th non−z e r o

d i f f e r e n c e i n s e t s i z e s has been found . ∗/

i f (dfs−>components <= 1) {

m2 = dfs−>b i p a r t i t e d i f f ;

i f (! dfs−>b i p a r t i t e | | !m2) return f a l s e ;

i f (m2 < 0) {

/∗ swap which s e t i s M and which i s S ∗/

m2 = −m2;

/∗ When the d f s s t a r t s , x i s on the ’ n e g a t i v e ’ s i d e o f the s e t

d i f f e r e n c e , i f an edge r e d u c t i o n oc cu r s the o th e r v e r t e x i n c i d e n t

to tha t reduced edge may be i n the same s e t as x . I n t h i s ca s e

too many components w i l l be r e p o r t e d . Th i s i s made worse because

more than one edge may have been reduced about x at t h i s p o i n t .

To d e a l w i th t h i s t r e a t x as a member o f the s e p a r a t i n g s e t

r a t h e r than a member o f the components r e s u l t i n g from the

s e p a r a t i n g s e t . Let M be the s e t o f components .

Let S be the s e p a r a t i n g s e t . I n the b i p a r t i t e c o n d i t i o n

M and S a r e made up o f i n d i v i d u a l v e r t i c e s t ha t e x a c t l y

co r r e spond to the two b i p a r t i t e s e t s .

I f x o r i g i n a l l y i s i n M and we want to move i t to S .

So the f o l l o w i n g oc cu r s to the d i f f e r e n c e between the

s i z e s o f M and S .

(|M| − 1) − (| S | + 1) == |M| − | S | − 2

So we must r educe the known d i f f e r e n c e by 2 .

∗/

i f (inSepSet) m2 −= 2 ;
}

∗c = m2;
return t rue ;

}

Appendix B: Pruning Algorithm 123

m1 = dfs−>components − dfs−>cu tpo in t s − ((! xCut && inSepSet) ? 1 : 0) ;
m2 = dfs−>b i p a r t i t e d i f f ;

i f (dfs−>b i p a r t i t e && m2) {

i f (m2 < 0) {

m2 = −m2;

/∗ s e e above f o r why next s t e p r e q u i r e d ∗/

i f (inSepSet) m2 −= 2 ;

}

/∗ we have two c h o i c e s f o r (M, S) he r e ∗/
/∗ choose s e t w i th l a r g e r d i f f e r e n c e between M and S ∗/

∗c = (m1 > m2) ? m1 : m2 ;

return t rue ;
}

∗c = m1;

return t rue ;

}

B.3 Turing Machine for Pruning Condition

B.3.1 Pruning

/∗ r e t u r n t r u e i f unwound a l l the way back to i n i t i a l graph s t a t e ∗/

s t a t i c HCTape∗
pruneSearchSpace (HCStateRef s , SInt c)
{

HCTape ∗hx ;

UInt ∗d = s−>degree ;
Vertex ∗e = s−>v i r tua lEdge ;
VArc ∗∗L = s−>ad jL i s t ;

HCTape ∗ stop = hx = s−>pos ;
UInt k = stop−>s t a tu s ;

whi le (! (k & HC TERMINATE) && (c > 0)) {
i f (k & HC ANCHOR TYPE1) c−−;
i f (k & HC ANCHOR POINT) c−−;

Appendix B: Pruning Algorithm 124

i f (k & HC FORCED DEG2) c−−;

stop−−;
k = stop−>s t a tu s ;

}

stop++;

hx = unwindSearchEdge (L , e , d , hx) ;
whi le (hx > stop) {

restoreAnchorPoint (s , L , e , d , hx) ;
hx = unwindSearchEdge (L , e , d , hx − 1) ;

}

return hx ;
}

B.3.2 Main Turing Machine Code

/∗ Run Tur ing Machine u n t i l a Hami l ton c y c l e i s found or s e a r c h space i s

exhaus t ed . Ensure tha t tape i s pr imed f i r s t b e f o r e c a l l i n g . Retu rns f a l s e

when s e a r c h space exhaus t ed .

The v e r s i o n o f the Tur ing Machine f o r the Mult i−Path a l g o r i t hm tha t

implements the p run ing a l g o r i t hm us i ng the bottom−up approach to the

p run ing . The l e a f node , o r l owe s t anchor po in t , i s t r a c k ed u s i n g the

l owCe l l and h i g hC e l l v a r i a b l e s . The l owCe l l v a r i a b l e i s updated to a lways

po i n t to the l owe s t b r anch i ng edge i n the tape . I f hx i s e v e r found to be

h i g h e r up the s e a r c h space then l owCe l l , an e x h u s t i v e l y s e a r ched l e a f node

w i l l have been found . At t h i s p o i n t the prune f l a g can be s e t and a t e s t

f o r a p run ing c o n d i t i o n can occu r at the next c o n s i s t e n t s t a t e i n the s e a r c h

space . One c a v i o t i s t ha t some l e a f nodes w i l l be mis sed when re−e n t e r i n g

the machine a f t e r f i n d i n g a Hami l ton c y c l e . G e n e r a l l y the l e a f nodes

c l o s e s t to the s t opp i ng c o n d i t i o n tha t found the Hami l ton c y c l e a r e avo ided ,

as no s e p a r a t i n g s e t i s l i k e l y to be found tha t s a t i s f i e s the p run ing lemma .

∗/

s t a t i c bool
runTuringMachineWithPruning (HCStateRef s)
{

Vertex ∗d2 , x1 , x , v ;
SInt c ;
HCTape ∗hx ; /∗ r ead / w r i t e head f o r tape ∗/

HCTape ∗ h ighCe l l = s−>o r i g i n ; /∗ t r a c k s r e s e t p o i n t f o r l owCe l l ∗/
HCTape ∗ l owCel l = h ighCe l l ; /∗ t r a c k s l e a f node i n s e a r c h space ∗/
bool prune = f a l s e ; /∗ i n d i c a t e s p run ing shou ld occu r ∗/

UInt ∗d = s−>degree ;

Appendix B: Pruning Algorithm 125

Vertex ∗e = s−>v i r tua lEdge ;
Vertex ∗nv = s−>vertexOrder ;
VArc ∗∗L = s−>ad jL i s t ;

s−>f l a g s . i sHami ltonCycle = f a l s e ;

/∗ tape head must be at a l e a f i n s e a r c h space , move tape head l e f t to the

c l o s e s t b r anch i ng edge ∗/

hx = unwindSearchEdge (L , e , d , s−>pos) ;

whi le (! (hx−>s t a tu s & HC TERMINATE)) {

/∗ remove the exhaus t ed b ranch i ng edge and sw i t ch d i r e c t i o n s ∗/
x1 = rotateAnchorPoint (s , L , e , d , hx , &d2) ;

/∗ remova l o f b r anch i ng edge may have c r e a t e d an i n c o n s i s t e n t s t a t e ∗/
x = ensureCons i s t ent (s , L , e , d , d2 , x1 , nv) ;

i f (x){

i f (prune) {

/∗ r e s e t l e a f node ∗/
l owCel l = h ighCe l l ;

/∗ count c u r r e n t number o f v e r t i c e s l e f t i n reduced graph ∗/
c = 1 ;
v = x ;
whi le ((v = nv [v])) i f (d [v]) c++;

/∗ get component d i f f e r e n c e from s e p a r a t i n g s e t t e s t

Note tha t x==x1 r e f e r s to a change i n anchor p o i n t s

when c o n s i s t e n c y was ensu r ed a f t e r the l a s t anchor po i n t

r o t a t i o n . The l a s t anchor po i n t x1 was abso rbed i n t o

the p a r t i a l c y c l e found so f a r . Th i s means tha t when

x and x1 a r e d i f f e r e n t , x does not have to be c o n s i d e r e d

pa r t o f the s e p a r a t i n g se t , as no b ranch i ng edges w i l l

have been removed from i t y e t . ∗/

i f (getComponentDiff (s−>dfs , L , e , d , nv , x,&c , x==x1)){

/∗ prune back the s e a r c h space as f a r as c l e t s us ∗/
hx = pruneSearchSpace (s , c) ;

/∗ s topped at an anchor po in t , keep t e s t i n g f o r

p run ing c o n d i t i o n u n t i l none a r e found ∗/
cont inue ;

}

Appendix B: Pruning Algorithm 126

/∗ no more t e s t i n g needs to occu r f o r t h i s l e v e l ∗/
prune = f a l s e ;

}

/∗ keep e x t end i ng b ranch i ng edges from anchor p o i n t s ∗/
whi le (extendAnchor (s , L , e , d , x)){

do x = nv [x] ; whi le (! d [x]) ;
}

}

/∗ s t opp i ng c o n d i t i o n encounte r ed (a l e a f) , s top movement to the r i g h t ∗/
i f (s−>f l a g s . i sHami ltonCycle) return t rue ;
hx = unwindSearchEdge (L , e , d , s−>pos) ;

/∗ en su r e tha t l owCe l l r e f e r s to the l owe s t anchor po i n t and check i f

a l e a f node has been exhaus t ed . ∗/

i f (hx > l owCel l) lowCel l = hx ;
e l s e prune = hx < l owCel l ;

}

s−>pos = hx ;
return f a l s e ;

} /∗ runTur ingMach ineWithPrun ing ∗/

	Title Page
	Abstract
	Table of Contents
	Introduction
	Graph Theory Concepts
	Basic Terminology
	Graphical Representation
	Paths and Cycles
	Connectivity
	Bipartitions
	Isomorphism

	The Multi-Path Method
	An Exhaustive Search
	Incident Edges about v
	Limiting Edges
	Multi-Path Method
	Simplifying the Search
	Reducing G
	Removal of Branching Edges

	The Search Space
	Example: Petersen Graph

	Considerations for Algorithm Design
	Data Structures
	Adjacency Matrix and Lists
	Degree Values and Virtual Edges
	Segment and Cycle Storage

	Reducing Time and Space Overhead
	Detecting Stopping Conditions
	Tracking Forced Vertices

	Designing the Multi-Path Algorithm
	Efficient Reduction and Recovery
	Extending Segments
	Managing Removed Edges
	Unwinding Segments and Restoring State

	Vertex Selection

	Navigating the Search Space using a Turing Machine
	State of the Tape
	Edges from E(S)
	Status Flags represented by the Bit-Field
	Moving Read/Write Head
	Moving Right
	Moving Left
	Switching Directions

	Implementation of the Multi-Path Algorithm
	Data
	Graph State
	Removed Edges
	Tape State

	Code
	Running the Turing Machine
	Extending Segments and Branching
	Restoring State and Removing Branching Edges

	Pruning Algorithm
	Pruning Mechanism
	Testing for Separating Sets
	Overview of Previous Test
	Increasing (Gr - K) - |K|

	Reducing the Frequency of Testing
	Top Down vs. Bottom Up Testing
	Testing at the Extremities of the Search Space
	Ensuring a Full Climb up the Search Tree

	Implementation
	Data Structures
	Code

	Reduction Technique
	Hamiltonian Subgraphs
	Half-Bipartite Structures
	Finding Reducible Complete Half-Bipartite Structures

	Reducing G
	False positives: an Unwanted Side Effect of Reduction

	Analysis and Verification
	Verification
	Analysis
	Knight's Move Graphs
	Complete Graphs
	Reduction Technique on the Meredith Graph

	Further Work
	Multi-Path Algorithm
	A Closer Examination of Vertex Order
	Algorithm for Directed Graphs
	Fine Tuning for the TSP
	A Work Stealing Parallel Implementation

	Pruning Algorithm
	Constructing Components for Better Separating Sets

	Reduction Technique
	Finding More Reducible Subgraphs
	Reconstructing Hamilton Cycles in G-1

	Multi-Path Code
	Data Types
	Extending Segments
	Support Routines for Extending Segments
	Main Routine for Extending Segments

	Extending Branches
	Restoring Graph

	Pruning Algorithm
	Data Types
	Depth First Search (DFS)
	Main DFS algorithm
	Routine for calculating Component / Separating Set differences.

	Turing Machine for Pruning Condition
	Pruning
	Main Turing Machine Code

